• Title/Summary/Keyword: wavelet transform analysis

Search Result 673, Processing Time 0.023 seconds

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

A Study on Suppression of Ultrasonic Background Noise Signal using wavelet Transform (Wavelet변환을 이용한 초음파 잡음신호의 제거에 관한 연구)

  • 박익근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.135-141
    • /
    • 1999
  • Recently, advance signal analysis which is called "Time-Frequency Analysis" has been developed. Wavelet and Wigner Distribution are used to the method. Wavelet transform(WT) is applied to time-frequency analysis of waveforms obtained by an ultrasonic pulse-echo technique. The Gabor function is adopted as the analyzing wavelet. Wavelet analysis method is an attractive technique for evolution of material characterization evoluation. In this paper, the feasibility of suppression of ultrasonic background noise signal using WT has been presented. These results suggest that ultrasonic background noise ginal can be suppressed and enhanced even for SNR of 20.8 dB. This property of the WT is extremely useful for the detecting flaw echos embedded in background noise.und noise.

  • PDF

Analysis of Heart Sound Using the Wavelet Transform (Wavelet Transform을 이용한 Heart Sound Analysis)

  • 위지영;김중규
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.959-962
    • /
    • 2000
  • A heart sound algorithm, which separates the heart sound signal into four parts; the first heart sound, the systolic period, the second heart sound, and the diastolic period has been developed. The algorithm uses discrete intensity envelopes of approximations of the wavelet transform analysis method to the phonocard-iogram(PCG)signal. Heart sound a highly nonstation-ary signal, so in the analysis of heart sound, it is important to study the frequency and time information. Further more, Wavelet Transform provides more features and characteristics of the PCG signal that will help physician to obtain qualitative and quantitative measurements of the heart sound.

  • PDF

A Study on the Algorithm for Detection of Partial Discharge in G15 Using Wavelet Transform (웨이브렛 변환을 이용한 GIS의 부분방전 검출 알고리즘에 관한 연구)

  • 강진수;김철환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Gas insulated switchgear(GIS) is an important equipment in a substation. It is highly desirable to measure a partial discharge(PD) in GIS which is a symptom before insulation breakdown occurs. The issue is that the PD signal is weak and sensitive to external noise. In this paper, the algorithm for detection of PD in GIS using wavelet transform is proposed. The wavelet transform provides a direct quantitative measure of spectral content, "dynamic spectrum", in the time-frequency domain. The recommended mother wavelet is 'Daubechies' wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, can be used most properly in disturbance phenomena which occurs rapidly for a short time. Through the procedure of wavelet transform, noise extraction and reconstruction, the signal is Analyzed to determine the magnitude of PD in GIS. In experimental results, we can know that partial discharge is exactly detected in combination of Dl and D2 using wavelet transform.transform.

A Novel Detection Technique for Voltage Sag in Distribution Lines Using the Wavelet Transform

  • Ko, Young-Hun;Kim, Chul-Hwan;Ahn, Sang-Pil
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.130-138
    • /
    • 2003
  • This paper presents a discrete wavelet transform approach for determining the beginning and end times of voltage sags. Firstly, investigations in the use of some typical mother wavelets, namely Daubechies, Symlets, Coiflets and Biorthogonal are carried out and the most appropriate mother wavelet is selected. The proposed technique is based on utilizing the maximum value of Dl (at scale 1) coefficients in multiresolution analysis (MRA) based on the discrete wavelet transform. The results are compared with other methods for determining voltage sag duration, such as the Root Mean Square (RMS) voltage and Short Time Fourier Transform (STFT) methods. It is shown that the voltage sag detection technique based on the wavelet transform is a satisfactory and reliable method for detecting voltage sags in power quality disturbance analysis.

A Study on the Time-Frequency Analysis of Transient Signal using Wavelet Transformation (Wavelet 변환을 이용한 과도신호의 시간-주파수 해석에 관한 연구)

  • 이기영;박두환;정종원;김기현;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.219-223
    • /
    • 2002
  • Voltage and current signals during impulse tests on transformer are treated as non-stationary signals. A new method incorporating signal-processing method such as Wavelets and courier transform is proposed for failure identification. It is now possible to distinguish failure during impulse tests. The method is experimentally validated on a transformer winding. The wavelet transforms enables the detection of the time of occurrence of switching or failure events. After establishing the time of occurrence, the original waveform is split into two or more sections. The wavelet transform has ability to analysis the failure signal on time domain as well as frequency domain. Therefore, the wavelet transform is superior than courier transform to analysis the failure signal. In this paper, the fact was proved by real data which was achieved.

  • PDF

A Study on Application of Wavelet Transform to Electrical Load Discriminations (부하 판별을 위한 Wavelet 변환의 응용에 관한 연구)

  • 정종원;김민성;김태홍;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.109-112
    • /
    • 2001
  • Recently, the subject of \"wavelet analysis\" has drawn much attention from both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Statistics and ets. Analogous to Fourier analysis, wavelets is a versatile tool with very rich mathematical content and great potential for applications. Specially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. In this paper, discrimination analyses of acquired electrical current signals for each and mixed loads were tried by using Morlet wavelet transform. Their representative loads were classified as TV, DRY(Dryer), REF(Refrigerate), and FL(Fluorescent Lamp).

  • PDF

A Study on the EMI Signal Analysis and Denoising Using a Wavelet Transform (웨이브렛 변환을 이용한 EMI 신호해석 및 잡음제거에 관한 연구)

  • 윤기방;박제헌;김기두
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, the different frequency component and time informations from an EMI signal are extracted simultaneously using a wavelet transform and the results of transform in the time and frequency domain are analyzed. Frequencies are extracted from the EMI signal by performing the multiresolution analysis using the Daubechies-4 filter coefficients and the time information through the results of wavelet transform. We have tried the correlation analysis to evaluate the results of wavelet transform. We have chosen the optimal wavelet function for an object signal by comparing the transformed results of various wavelet functions and verified the simulation examples of waveform and harmonic analysis using a wavelet transform. We have proved the denoising effect to the EMI signal using the soft thresholding technique.

  • PDF

Damping Identification Analysis of Membrane Structures under the Wind Load by Wavelet Transform

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, we take advantage of Wavelet Transform to identify damping ratios of membrane structures under wind action. Due to the lightweight and flexibility of membrane structures, they are very sensitive to the wind load, and show a type of fluid-structure interaction phenomenon simultaneously. In this study, we firstly obtain the responses of an air-supported membrane structure by ADINA with the consideration of this characteristic, and then conduct Wavelet Transform on these responses. Based on the Wavelet Transform, damping ratios could be obtained from the slope of Wavelet Transform in a semi-logarithmic scale at a certain dilation coefficient. According to this principle, damping ratios could eventually be obtained. There are two numerical examples in this study. The first one is a simulated signal, which is used to verify the accuracy of the Wavelet Transform method. The second one is an air-supported membrane structure under wind action, damping ratios obtained from this method is about 0.05~0.09. The Wavelet Transform method could be regarded as a very good method for the the damping analysis, especially for the large spatial structures whose natural frequencies are closely spaced.

Ride Comfort Analysis of a Vehicle Based on Continuous Wavelet Transform

  • Lee, Sang-Kwon;Son, Choong-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.535-543
    • /
    • 2001
  • This paper presents the ride comfort analysis of a vehicle based on wavelet transform. Traditionally, the objective evaluation of impact harshness is based on the vibration dose value (VDV) and frequency weighting method. These methods do not consider the damping effect of the suspension system of a vehicle. In this paper, the damping is estimated using wavelet transform based on Morlet mother wavelet and its effect is considered for the subjective evaluation of impact harshness of a car.

  • PDF