• Title/Summary/Keyword: wave-packet

Search Result 78, Processing Time 0.034 seconds

On the Interaction of a Solitary Wave and a Wave-Packet (고립파와 파도패킷의 상호작용)

  • Jong Eon Kim;Taek Soo Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.341-350
    • /
    • 2023
  • In this paper, numerical experiments are performed to examine the collision between a solitary wave and a wave-packet (dispersive wave) in shallow water. We attempt to introduce the improved Boussinesq equation governing the experiments, which is solved by using a semi-analytical approach, called Pseudo-parameter Iteration method(PIM). Using various numerical experiments, we have observed that the wave-packet (propagating dispersive wave) experiences a phase shift after collision with a solitary wave. This phenomenon may be considered as a nonlinear wave-wave interaction in shallow water.

INVESTIGATION OF THE COHERENT WAVE PACKET FOR A TIME-DEPENDENT DAMPED HARMONIC OSCILLATOR

  • CHOI JEONG RYEOL;CHOI S. S.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.495-508
    • /
    • 2005
  • We investigated both classical and quantum properties of a damped harmonic oscillator with a time-variable elastic coefficient using invariant operator method. We acquired the energy eigenvalues, uncertainties and probability densities for several types of wave packet. The probability density corresponding to the displaced minimum wave packet expressed in terms of the time-dependent Gaussian function. The displaced minimum wave packet not only be attenuated but also oscillates about x = 0. We confirmed that there exist correspondence between quantum and classical behaviors for the time-dependent damped harmonic oscillator.

Dynamics of an atomic wave packet in a standing wave quantized field

  • Tak, Jo-Yeong;Won, An-Gyeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.252-253
    • /
    • 2001
  • The purpose of this work is to investigate the dynamics of an atomic wave packet whose center-of-mass motion is quantized in a resonant standing wave cavity field. The mechanical aspect of the matter-field interaction has been extensively studied In the theme of atomic beam deflection, diffraction, or reflection by a standing-wave field. The effect caused in the behavior of spontaneous emission by the atomic center-of-mass motion, classical and quantized, in a standing wave cavity mode has been studied, and recently the one-atom laser with quantized atomic center-of-mass motion has been investigated. (omitted)

  • PDF

WAVE System Performance for Platooning Vehicle Service Requirements Under Highway Environments (고속도로 환경에서 군집주행 서비스 요구사항에 대한 WAVE 통신시스템 성능 분석)

  • Song, Yoo-seung;Choi, Hyun Kyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.147-156
    • /
    • 2017
  • This paper analyzes the performance limit of WAVE system for the platooning service requirements which is referred from the de facto standards. The performance of the packet error rate and mean delay as key parameters in the wireless communication systems should be satisfied to provide safety to the platooning vehicles. The test scenarios are conducted by considering the following vehicle groups: platooning vehicles, vehicles within a hop distance and vehicles within two hop distance( called hidden node vehicles). The models of packet error rate and delay deals with the topology of aforementioned vehicle groups, vehicle speed and communication range. The numerical results are obtained in terms of packet size, packet arrival rate and data transmission rate. Finally, this paper suggests the robust range of packet error rate and delay for the WAVE system to provide the platooning vehicle service.

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho;Byun, Chang Woo;Choi, Nark Nyul;Kim, Dae-Soung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1269-1278
    • /
    • 2018
  • Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Potential Energy Surface from Spectroscopic Data in the Photodissociation of Polyatomic Molecules

  • Kim, Hwa Jung;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-independent inversion method and discussed several extensions of the algorithm.

WAVE Packet Transmission Method for Railroad WAVE Communication (철도 WAVE 통신을 위한 WAVE 패킷 전송방법)

  • Cho, Bong-Kwan;Ryu, Sang-Hwan;Kim, Keum-Bee;Kim, Ronny Yongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6604-6610
    • /
    • 2015
  • In this paper, an efficient Wireless Access in Vehicular Environment (WAVE) packet transmission scheme for railroad communication is proposed. WAVE communication is a wireless local area network (WLAN) based communication and it is developed to be suitable for vehicular communication. There has been a lot of study on WAVE's applicability to Intelligent Transport System (ITS). As one of main transportation methods, by using WAVE, quality of railroad communication including WLAN based Communication Based Train Control (CBTC) can be enhanced and variety of railroad communication systems can be integrated into WAVE. However, there are technical challenges to adopt WAVE in railroad communications. For the simplest single-PHY WAVE, time division alternation of 50ms between Control Channel (CCH) and Service Channel (SCH) is required. Since there are delay sensitive railroad traffic types, alternation operation of CCH and SCH may cause performance degradation. In this paper, after identifying a couple of problems based on detailed analysis, a novel packet transmission scheme under railroad environment is proposed. In order to verify if the proposed scheme meets the requirement of railroad communication, WAVE transmission is mathematically modeled.

A Packet Collision Avoidance Technique in IEEE1609.4 Based Time Synchronization Multi-channel Environment (IEEE1609.4 기반 시간 동기 멀티채널 환경에서의 패킷 충돌 회피 기법)

  • Jin, Seong-Keun;Lim, Ki-Taeg;Shin, Dae-Kyo;Yoon, Sang-Hun;Jung, Han-Gyun
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we analyze the communication performance in a time synchronous multi-channel environment and deal with a packet collision avoidance technique to improve it based on IEEE1609.4 for increasing the efficiency of the control channel IEEE802.11p WAVE communication system. In previous works, they tried to solve this problem by message scheduling method on application layer software or changing the value of the random back-off optionally Contention Window. In this paper, we propose a method for adjusting the Channel Guard Interval for packet collision avoidance. The performance was evaluated by the actual vehicle test. The result was confirmed performance over 90% PDR(Packet Delivery Ratio).

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.