• Title/Summary/Keyword: wave nature

Search Result 207, Processing Time 0.027 seconds

An Analysis of Runoff Characteristics at Creeks (소하천 유역의 유출변화 특성분석)

  • Jung, Jae-Wook;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.75-83
    • /
    • 2001
  • In this study, the maintenance problems were investigated through checking the creeks which were improved by close-to-nature river improvement technique. The characteristics of flow were measured at Changsa Creek in Suwon city. The computational results of numerical model with kinematic wave theory was evaluated through observation data about precipitation, velocity, and flow depth. Furthermore, SCS, Clark, and RRL models were compared to the actual observations. As a result, the kinematic wave theory's calculated peak time of discharge concentration occurred little earlier than the actual observation, but the tendency of hydrograph coincided with observation.

  • PDF

Application of the Scaling Law for Swept Shock/Boundary-Layer Interactions

  • Lee, Yeol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2116-2124
    • /
    • 2003
  • An experimental study providing additional knowledge of quasi-conical symmetry in swept shock wave/turbulent boundary-layer interactions is described. When a turbulent boundary layer on the flat plate is subjected to interact with a swept planar shock wave, the interaction flowfield far from fin leading edge has a nature of conical symmetry, which topological features of the interaction flow appear to emanate from a virtual conical origin. Surface streakline patterns obtained from the kerosene-lampblack tracings have been utilized to obtain representative surface features of the flow, including the location of the virtual conical origin. The scaling law for the sharp-fin interactions suggested by previous investigators has been reexamined for different freestream Mach numbers. It is noticed that the scaling law reasonably agrees with the present experimental data, however, that the law is not appropriate to estimate the location of the virtual conical origin. Further knowledge of the correlation for the virtual conical origin has thus been proposed.

Study on Wave Energy Generation of Multi-Floating Bodies for Energy Absorption by CFD

  • Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.38-43
    • /
    • 2013
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming waves. A spring constant is adopted to control the motion of multi floating bodies and to calculate the total average power absorption. Three cases of different wavelengths namely 20D, 30D and 40D have been modeled to analyze the total average power absorption. The average power absorption not only varies with the position of the floating body but also varies with wavelength. From the results obtained, it is concluded that the maximum total average power absorption is 9W approximately in wavelength 30D and the minimum total average power absorption is 4.3W approximately in wavelength 40D.

Senstivity analysis by seismograph of composition Dam (복합댐의 지진계수별 민감도 분석)

  • Kim, Jae-Hong;Oh, Byung-Hyun;Hong, Won-Pho;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.820-826
    • /
    • 2008
  • Differ number of seismograph to the composition dam by recently frequent earthquake and analyzed responsiveness. Interest for dam inner place by increase of something wrong flood and inside and outside of the country earthquake appearance according to unusual change of weather is risen, on important urea in dam safety floodgate school register by structural safety divide can. Therefore, by PMP (PMF) of dam and increase of domestic earthquake occurrence, need research about earthquake resistant nature ability estimation of water resources facilities. Because responsiveness analysis applies number 0.154 ~ 0.25 g of seismograph, seismic wave that use in analysis is being suitable in dynamic analysis of construction such as Rockfill dam from representative chapter cycle faction and recommend in domestic internal examination design workbook, and use results applied much Hachinohe wave onions in van abroad.

  • PDF

High-Frequency Analysis of Electromagnetic Backscattering from an Ellipsoid (타원체의 역방향 산란 해석)

  • Shim, Jae-Ruen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.685-688
    • /
    • 2005
  • In this study, an efficient algorithm for the numerical search of the geodesic path of the creeping wave on a doubly curved surface is developed. The ellipsoid as a doubly curved surface is studied because of its three dimensional nature in that it can be used to simulate the body of an aircraft, or a missile body. Numerical result of the geodesic path on an ellipsoid is given.

  • PDF

A Study on the Nature of Sound and the Hearing Mechanism (소리의 특성 및 청지각기능에 대한 고찰)

  • Lee, Jung-Hak;Kim, Jin-Sook
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.167-179
    • /
    • 1999
  • The hearing mechanism is a complicated system. Sound is generated by a source that sends out air pressure or power. The pressure or power makes the sound waves. These waves reach the eardrum, or tympanic membrane, which vibrates at a rate and magnitude proportional to the nature of the sound waves. The tympanic membrane transforms this vibration into the mechanical energy in the middle ear, which in turn converts it to the hydraulic energy in the fluid of the inner ear. The hydraulic energy stimulates the sensory cells of the inner ear which send neuroelectrical impulses to the central auditory nervous system. The passive perception of auditory information starts just here. The listener gives attention to the speech sound, differentiates the sound from background noise, and integrates his experience with similar sounds. The listener then puts all of these aspects of audition into the context of the moment to identify the nature of sound. This has a major role in human communication. This paper provides an overview of the nature and characteristics of sound, the structure and function of the auditory system, and the way in which sound is processed by the auditory system.

  • PDF

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF

SMALL AMPLITUDE WAVE IN SHALLOW WATER OVER LINEAR AND QUADRATIC SLOPING BEDS

  • Bhatta, Dambaru D.;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.53-65
    • /
    • 2003
  • Here we present a study of small-amplitude, shallow water waves on sloping beds. The beds considered in this analysis are linear and quadratic in nature. First we start with stating the relevant governing equations and boundary conditions for the theory of water waves. Once the complete prescription of the water-wave problem is available based on some assumptions (like inviscid, irrotational flow), we normalize it by introducing a suitable set of non-dimensional variables and then we scale the variables with respect to the amplitude parameter. This helps us to characterize the various types of approximation. In the process, a summary of equations that represent different approximations of the water-wave problem is stated. All the relevant equations are presented in rectangular Cartesian coordinates. Then we derive the equations and boundary conditions for small-amplitude and shallow water waves. Two specific types of bed are considered for our calculations. One is a bed with constant slope and the other bed has a quadratic form of surface. These are solved by using separation of variables method.