• Title/Summary/Keyword: wave generator design

검색결과 75건 처리시간 0.038초

정유압 구동식 변속기를 사용한 새로운 파력 발전기 설계 (A New Design of Wave Energy Generator Using Hydrostatic Transmission)

  • 안경관;딩광졍;윤종일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.171-171
    • /
    • 2010
  • An innovative design of a floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), named HSTWEC, is presented in this paper. The system is designed to convert ocean wave fluctuation into electricity by using the HST circuit and an electric generator. Based on the floating-buoy concept, the wave forces the sub-buoy to move up and down. Consequently, the electric power can be obtained from the generator in both the moving directions of the sub-buoy through the HST circuit as shown in Fig. 1. In order to investigate the HSTWEC operations, a mathematical model of the system is indispensible. In addition, the method to control the HSTWEC, including: pump displacement control, tension adjustment control and ballast weight control, is also discussed in this paper. Finally, the design concept as well as simulation results indicated that this HSTWEC design is an effective solution and possible to fabricate for wave energy generation.

  • PDF

조파판 수중운동의 근사해석과 조파기 설계에 응용 (Simplified Analytic Solution of Submerged Wave Board Motion and Its Application on the Design of Wave Generator)

  • 권종오;김효철;류재문;오정근
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.461-469
    • /
    • 2017
  • A segment of the wave board has been expressed as a submerged line segment in the two dimensional wave flume. The lower end of the line segment could be extended to the bottom of the wave flume and the other opposite upper end of the board could be extended to the free surface. It is assumed that the motion of the wave board could be defined by the sinusoidal motion in horizontal direction on either end of the wave board. When the amplitude of sinusoidal motion of the wave board on lower and upper end are equal, the wave board motion could express the horizontally oscillating submerged segment of piston type wave generator. The submerged segment of flap type wave generator also could be expressed by taking the motion amplitude differently for the either end of the board. The pivot point of the segment motion could play a role of hinge point of the flap type wave generator. Simplified analytic solution of oscillating submerged wave board segment in water of finite depth has been derived through the first order perturbation method at two dimensional domain. The case study of the analytic solution has been carried out and it is found out that the solution could be utilized for the design of wave generator with arbitrary shape by linear superposition.

신형식 다기능 조파기 설계 (On the Design of Novel Hybrid Wave Generator)

  • 김효철;오정근
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.112-120
    • /
    • 2021
  • The novel wave generating system of a wave flume has been devised by utilizing the analytic solution of wave board motion in idealized two dimensional space. The arbitrary oscillation motion of submerged wave board segment has been defined by sinusoidal motion of upper and lower end of the wave board. The analytic solution of the wave board motion has been represented by the solution of board motion due to flap motion and swing motion. Arbitrary oscillation of the board could be specified by determining amplitude, frequency, and the phase lag. A novel hybrid wave generator could be operated not only in piston motion but also in flap or swing motion by selection of control parameter. The wave generator has unique motion enhancing ability by appending flap motion or swing motion to piston motion in wave generation. In addition the hybrid wave generator has advantages in generating high quality wave spectrum of irregular wave in simulating real sea condition.

대 전력 후진파 발진기의 설계를 위한 마르크스 발생기의 제작 및 검증 (Fabrication and Identification of Marx Generator for the Design of High Power Backward Wave Oscillator)

  • 김원섭;황낙훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권8호
    • /
    • pp.391-399
    • /
    • 1999
  • We have designed the backward wave oscillator, a power-pulsed generator oscillated at 20 GHz has higher frequency than current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter (D/$\lambda$=4.8) of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density. We have fabricated a marx generator, pulse forming line and diode. And the development of a compact pulsed power generator with short period and low amplitude is expected.

  • PDF

파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계 (Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter)

  • 최영휴;이창조;홍대선
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

SRD를 이용한 UWB 기술용 단일/멀티밴드 Impulse Generator의 설계 (Design of Single/Multiband Impulse Generator Using SRD for UWB(Ultra Wideband) Technique)

  • 김기남;김인석
    • 한국항행학회논문지
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 2005
  • 본 논문에서는 차세대 근거리 실내 무선 환경 기술로 채택 가능성이 높은 UWB(Ultra Wideband)기술용 Impulse Generator를 SRD(Step Recovery Diode)를 이용하여 설계하였다. 설계 목표는 단순한 설계 구조와 함께 저가, 소형, 고성능의 Impulse Generator 개발에 있다. 미국의 FCC(Federal Communications Commission)의 기준인 주파수 범위 3.1~10.6 GHz, 출력 제한 레벨 -41.25 dBm을 만족하는 Impulse Generator를 회로 시뮬레이터인 Agilent Technologies사의 ADS를 이용하여 설계, 제작, 측정하였다. 설계된 회로의 출력 신호는 단일밴드용과 멀티밴드용으로 구분하였다.

  • PDF

Adjustable Phase, Discrete Time Sinewave Generator

  • Klunium, Sawitree;Praesombool, Sukunya;Hinjit, Watcharapong;Yimman, Surapun;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.277-281
    • /
    • 2004
  • The following paper proposes the new design of digital sine wave generator which allows users to define the phase shift of the out put sinewave according to user's demands. This new sinewave generator will have 2 outputs, cos(${\omega}_0n$) and cos(${\omega}_0n$+${\phi}$) The design of the new system starts from the construction of discrete time system with impulse response as cos(${\omega}_0n$) in a pair of conjugate complex poles and a pair of zeros at the origin and the real axis. If users want to make a phase shift of sign wave, users can change the position of zero at the real axis. The results of the experiment have shown that the new design of sign wave generator has generated sine wave with the correct phase shift according to the theory.

  • PDF

Development of an Unmanned Control System of Induction Generator for a Wave Power Plant

  • Hwan, Jeon-Bong;Lim, Yong-Kon;Hong, Seok-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.74.5-74
    • /
    • 2001
  • The wave power plant is a generating system to convert the wave energy resources to electric energy. ´CHUJEON A´, which is a prototype of wave power plant developed by KORDI(Korea Ocean Research and Development Institute), has been launched for its performance test. A wound rotor induction machine is adopted as a generator for the power plant to acquire constant frequency and voltage over wide range of rotor speed. Because the generator of ´CHUJEON A´ has no connection to the power grid line on land, all of the processes to generate and consume the electricity have to be conducted on the floating plant. This paper deals with the design and implementation of the unmanned control system for ´CHUJEON A´. The system includes generator control system, power conversion and charging system, data acquisition and wireless communication system ...

  • PDF

선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기 (Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator)

  • 조일형;최장영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권3호
    • /
    • pp.174-181
    • /
    • 2014
  • 선형발전기가 연결된 부이의 수직운동에 대한 시간영역 해석을 수행하여 얻은 시계열 자료를 가지고 선형발전기를 설계하고 전기에너지 출력특성 및 효율에 대해 살펴보았다. 1차 변환장치로 원통형 부이를 선택하였고, 2차 변환장치로 양측식 할박(Halbach) 배열 영구자석 가동자와 철심형 슬롯리스(Slotless) 고정자로 구성된 선형발전기를 사용하였다. 시간영역에서 부이의 수직운동 속도와 파랑하중을 입력자료로 직선형 영구자석 발전기가 설계되었고, 설계된 발전기는 규칙파 조건에서 유한요소 해석법을 적용하여 발전특성해석을 수행함으로써, 그 타당성이 입증되었다. 또한 불규칙파 조건에서 합리적이고 빠른 해석을 위해, 등가회로법을 적용하여 발전특성 해석을 수행하였는데, 그 결과 역시 매우 타당함을 확인하였다.

선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계 (Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy)

  • 김정록;배윤혁;조일형
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권2호
    • /
    • pp.146-152
    • /
    • 2014
  • 선형발전기와 연성된 원통형 부이의 수직운동으로부터 파랑에너지를 추출하는 파력발전장치의 설계과정을 소개하였다. 최대 파워는 최적조건($c_{PTO}=b_T$, ${\omega}={\omega}_N$)에서 발생하며, 공진조건시 부이의 수직운동 고유주파수와 속도스펙트럼의 피크 주파수를 일치시키지 않고 의도적으로 고유주파수를 15% 크게 설정하면 추출파워의 최대값을 더욱 높일 수 있다. 이러한 방법을 통하여 추출 파워의 증가와 함께 부이의 흘수를 낮추고 동시에 PTO 감쇠력을 줄일 수 있기 때문에 발전장치 제작 비용을 낮출 수 있는 부수적인 효과를 얻을 수 있었다.