• Title/Summary/Keyword: wave finite element method

검색결과 563건 처리시간 0.022초

Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법 (A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range)

  • 심은보;장근식
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

2차원 유한요소법을 이용한 파랑의 Bragg반사 해석 (Analysis of Bragg Reflection with Two-Dimensional Finite Element Method)

  • 조용식;정우창
    • 한국수자원학회논문집
    • /
    • 제35권6호
    • /
    • pp.677-684
    • /
    • 2002
  • 본 연구에서는 유한요소법을 이용하여 수심의 변화에 의해 발생되는 파랑의 회절에 대해 수치적 모의실험을 수행하였다. 본 모형은 정현파형 지형을 통과하는 단조파의 반사율을 계산하는데 적용되었다. 계산된 반사율은 고유 함수전개법에 의한 결과와 수리모형실험에 의한 관측결과와 비교하여 본 해석법을 검증하였으며, 이로부터 정현파형 지형의 진폭과 사련의 수의 변화에 대한 반사율의 변화에 적용하여 그의 특성을 조사하였다.

비점성 대류 방정식의 계산을 위한 Hermite 3차 요소의 사용에 대한 (The Use of Hermite Cubic Element for Inviscid Convective Equations)

  • 김진환
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.99-106
    • /
    • 1993
  • The use of Hermite cubic element, as a possible finite element computation of transport equations containing shocks, has been invesigated. In the present paper the hermite cubic elements are applied to both linear and nonlinear scalar one and two dimensional equations. In the one dimensional problems, numerical results by the hermite cubic element show better than those by the linear element, and the steady state solution by the hermite cubic element yields result with good resolution. This fact proves the superiority of the hermite cubic element in space differencing. In two dimensional case, the results by the hermite cubic element shows a boundary instability, and the use of higher order time differencing method may be necessary for fixing the problem.

  • PDF

Mobile harbor: structural dynamic response of RORI crane to wave-induced rolling excitation

  • Cho, Jin-Rae;Han, Ki-Chul;Hwang, Soon-Wook;Cho, Choon-Soo;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.679-690
    • /
    • 2012
  • A new concept sea-floating port called mobile harbor has been introduced, in order to resolve the limitation of current above-ground port facilities against the continuous growth of worldwide marine transportation. One of important subjects in the design of a mobile harbor is to secure the dynamic stability against wave-induced excitation, because a relatively large-scale heavy crane system installed at the top of mobile harbor should load/unload containers at sea under the sea state up to level 3. In this context, this paper addresses a two-step sequential analytical-numerical method for analyzing the structural dynamic response of the mobile harbor crane system to the wave-induced rolling excitation. The rigid ship motion of mobile harbor by wave is analytically solved, and the flexible dynamic response of the crane system by the rigid ship motion is analyzed by the finite element method. The hydrodynamic effect between sea water and mobile harbor is reflected by means of the added moment of inertia.

고속 흐름에서의 충격파와 난류경계층의 상호작용에 관한 수치적 연구 (A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows)

  • 문수연;손창현;이충원
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.322-329
    • /
    • 2001
  • A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

Modeling interply debonding in laminated architectural glass subject to low velocity impact

  • Flocker, F.W.;Dharani, L.R.
    • Structural Engineering and Mechanics
    • /
    • 제6권5호
    • /
    • pp.485-496
    • /
    • 1998
  • Standard finite element wave propagation codes are useful for determining stresses caused by the impact of one body with another; however, their applicability to a laminated system such as architectural laminated glass is limited because the important interlayer delamination process caused by impact loading is difficult to model. This paper presents a method that allows traditional wave propagation codes to model the interlayer debonding of laminated architectural glass subject to low velocity, small missile impact such as that which occurs in severe windstorms. The method can be extended to any multilayered medium with adhesive bonding between the layers. Computational results of concern to architectural glazing designers are presented.

스펙트럴소법을 이용한 평판의 동적거동 해석 (A Study on the Dynamic Behaviors of Plate Structure Using Spectral Element Method)

  • 이우식;이준근;이상희
    • 소음진동
    • /
    • 제6권5호
    • /
    • pp.617-624
    • /
    • 1996
  • Finite Element Method(FEM) is one of the most popularly used method in analyzing the dynamic behaviors of structures. But unless the number of finite elements is large enough, the results from FEM are somewhat different form exact analytical solutions, especially at high frequency range. On the other hand, as the Spectral Element Method(SEM) deals directly with the governing equations of structures, the results from this method cannot but be exact regardless of any frequency range. However, despite two dimensional structures are more general, the SEM has been applied only to the analysis of one dimensional structures so far. In this paper, therefore, new methodologies are introduced to analyze the two dimensional plate structure using SEM. The results from this new method are compared with the exact analytical solutions by letting the two dimensional plate structure be one dimensional and showed the dynamic responses of two dimensional plate by including various waves propagated into x-direction.

  • PDF

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

탄성파의 변형 및 응력 계산에 관한 연구 (Elastic Wave Field Calculations)

  • 이정기
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.213-223
    • /
    • 1997
  • 탄성파의 변형 및 응력계산에 관한 연구는 비파괴검사를 비롯하여 광범위한 공학분야에서 중요한 역할을 하고 있다. 특히 파형의 산란문제가 많은 연구자들에 의해 다양한 방법으로 연구되고 있다. 실린더 또는 구와 같은 간단한 형상을 지닌 산란체에 대하여, 정상상태 탄성파의 산란문제의 해석은 해석적 기법을 이용한 연구가 가능하다. 하지만 임의의 형상을 갖는 산란체 또는 다수의 함유체에 대한 해석에는 수치해석방법이 요구된다. 예를 들면, 무한요소법 또는 Global-Local 유한요소법이라고 하는 혼성 유한요소법과 같은 특수한 유한요소법등이 개발되고 있다. 최근에는 경계요소법을 사용한 산란문제의 해석에 대한 연구가 진행되고 있다. 본 논문에서는 다수의 임의의 형상을 갖는 함유체, 공동 또는 크랙을 포함하고있는 무한고체에서의 일반적인 탄성동력학 문제를 해석하기 위해 새롭게 개발된 체적적분 방정식법을 소개한다. 또한 경계요소법을 사용하여 탄성파의 산란문제에 대한 수치해석을 수행하였으며, 이의 결과를 체적적분 방정식법의 결과와 비교 검토 하였다.

  • PDF