• Title/Summary/Keyword: wave damping

Search Result 408, Processing Time 0.03 seconds

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

A Numerical Model of Nonlinear Stream Function Wave Theory by the Least Squares Method (최소자승법을 사용한 유량함수 비선형 파랑이론의 수치모형)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.340-352
    • /
    • 1994
  • A numerical model of nonlinear stream function wave theory evolved from Dean's model (1965) is presented. The stream function theory has been evaluated to be an accurate and useful tool for engineering applications. Effects of damping coefficient employed in a linearized simultaneous equation and number of points in the numerical integration of model on numerical solutions are assessed. Most accurate wave characteristics calculated by the present model are tabulated using revised Dean's Table (Chaplin, 1980) input parameters. Since the well-known feature of nearly breaking waves that with increasing wave steepness the wave length as well as integral properties have a maximum prior to the limiting wave height is represented by the model, the accuracy of model can be proved.

  • PDF

Estimation of damping induced by taut mooring lines

  • Xiong, Lingzhi;Lu, Wenyue;Li, Xin;Guo, Xiaoxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.810-818
    • /
    • 2020
  • A moored floating structure may exhibit resonant motion responses to low-frequency excitations. Similar to the resonant responses of many vibration systems, the motion amplitude of a moored floating structure is significantly affected by the damping of the entire system. In such cases, the damping contributed by the mooring lines sometimes accounts for as much as 80% of the total damping. While the damping induced by catenary mooring lines is well-investigated, few studies have been conducted on the damping induced by taut mooring lines, especially one partly embedded in soil. The present study develops a simple but accurate model for estimating the damping contributed by mooring lines. A typical type of taut mooring line was used as the reference and the hydrodynamic drag force and soil resistance were taken into consideration. The proposed model was validated by comparing its predictions with those of a previously developed model and experimental measurements obtained by a physical model. Case studies and sensitivity studies were also conducted using the validated model. The damping induced by the soil resistance was found to be considerably smaller than the hydrodynamic damping. The superposition of the wave frequency motion on the low-frequency motion was also observed to significantly amplify the damping induced by the mooring lines.

APPLICATION OF ROTHE'S METHOD TO A NONLINEAR WAVE EQUATION ON GRAPHS

  • Lin, Yong;Xie, Yuanyuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.745-756
    • /
    • 2022
  • We study a nonlinear wave equation on finite connected weighted graphs. Using Rothe's and energy methods, we prove the existence and uniqueness of solution under certain assumption. For linear wave equation on graphs, Lin and Xie [10] obtained the existence and uniqueness of solution. The main novelty of this paper is that the wave equation we considered has the nonlinear damping term |ut|p-1·ut (p > 1).

Hydrodynamic Response of Spar with Single and Double Heave Plates in Regular Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.188-208
    • /
    • 2013
  • The motion response of floating structures should be adequately low to permit the operation of rigid risers along with dry well heads. Though Spar platforms have low heave responses under lower sea state, could become unacceptable in near resonance region of wave periods. Hence the hydrodynamic response, heave in particular, must be examined to ensure that it is minimized. To reduce heave motions, external damping devices are introduced and one such effective damping device is heave plate. Addition of heave plate can provide additional viscous damping and additional added mass in the heave direction which influence the heave motion. The present study focuses on the influence of heave plate on the hydrodynamic responses of Classic Spar in regular waves. The experimental investigation has been carried out on a 1:100 scale model of Spar with single and double heave plates in regular waves. Numerical investigation has been carried out to derive the hydrodynamic responses using ANSYS AQWA. The experimental results were compared with those obtained from numerical simulation and found to be in good agreement. The influence of disk diameter ratio, wave steepness, pretension in the mooring line and relative spacing between the plates on the hydrodynamic responses of Spar are evaluated and presented.

Analysis on Motion Responses and Transmission Coefficients of a Moored Floating Breakwater in Oblique Incident Waves (경사 입사파중 계류된 부유식 방파제의 운동응답과 투과율 해석)

  • Cho, Il-Hyoung;Pyo, Sang-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.6-13
    • /
    • 2009
  • Based on the boundary element method, the motion responses and transmission coefficients of a moored floating breakwater were investigated in oblique waves. To satisfy the outgoing radiation condition in the far field, the fluid domain was divided into inner and outer regions. The complete solution could be obtained by applying the matching conditions between the eigenfunction-based outer solution and BEM-based inner solution. Using the developed predictive tools, the wave exciting forces, added mass, damping coefficients, motion responses, and transmission coefficients were assessed for various combinations of breakwater configuration, wave heading, mooring cables properties, and wave characteristics. It was found that the transmission coefficient for a moored floating breakwater was closely dependent on the motion responses, which were greatly amplified at the resonant frequencies.

Characteristics of Wave Attenuation with Coastal Wetland Vegetation (연안 습지식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • As a transition region between ocean and land, coastal wetlands are significant ecosystems that maintain water quality, provide natural habitat for a variety of species, and slow down erosion. The energy of coastal waves and storm surges are reduced by vegetation cover, which also helps to maintain wetlands through increased sediment deposition. Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection and modeling coastal hydrodynamics. In this study, laboratory experiments were used to quantify wave attenuation as a function of vegetation type as well as wave conditions. Wave attenuation characteristics were investigated under regular waves for rigid model vegetation. Laboratory hydraulic test and numerical analysis were conducted to investigate regular wave attenuation through emergent vegetation with wave steepness ak and relative water depth kh. The normalized wave attenuation was analyzed to the decay equation of Dalrymple et al.(1984) to determine the vegetation transmission coefficients, damping factor and drag coefficients. It was found that drag coefficient was better correlated to Keulegan-Carpenter number than Reynolds number and that the damping increased as wave steepness increased.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor (로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구)

  • Sohn, Chae-Hoon;Park, I-Sun;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Effects of mean flow and nozzle damping on acoustic tuning of a gas-liquid scheme coaxial injector are investigated numerically adopting a linear acoustic analysis. The injector plays a role as a half-wave acoustic resonator for acoustic damping in a combustion chamber of a liquid rocket engine. As Mach number of mean flow in a chamber increases, the resonant frequency of the first tangential mode decreases slightly and the optimum injector tuning length varies negligibly. Nozzle damping affects neither the resonant frequency nor the optimum length. From these numerical results, effects of mean flow and nozzle damping on acoustic tuning of a resonator are negligible. As open area of the injectors increases, the acoustic amplitude decreases, but new injector-coupled modes appear.

Transient soil-structure interaction with consistent description of radiation damping

  • Zulkifli, Ediansjah;Ruge, Peter
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.47-66
    • /
    • 2009
  • Radiation damping due to wave propagation in unbounded domains may cause a significant reduction of structural vibrations when excited near resonance. Here a novel matrix-valued algebraic Pad$\acute{e}$-like stiffness formulation in the frequency-domain and a corresponding state equation in the time domain are elaborated for a soil-structure interaction problem with a layered soil excited in a transient manner by a flexible rotor during startup and shutdown. The contribution of radiation damping caused by a soil-layer upon a rigid bedrock is characterized by the corresponding amount of critical damping as it is used in structural dynamics.