• Title/Summary/Keyword: wave climate

Search Result 227, Processing Time 0.023 seconds

Risk Assessment of Public Agencies' Buildings due to Climate Change (기후변화에 따른 공공기관 건축물의 리스크평가)

  • Choi, Yun-Cheul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.3-10
    • /
    • 2017
  • Climate change not only has various impacts such as human shoes, economics, the environment, industry, etc. but the damage caused by this is also increasing, it is expected that severe damage will not occur without efforts to respond to climate change ing. Therefore, as the impact of climate change like the extreme weather phenomenon is dailyized and its strength tends to become stronger, as much as the mitigation measures of climate change, as a comparative effort to reduce the negative impact of climate change, adaptation to climate change is necessary. Especially when the damage caused by climate change (intense heat, torrential rain, cold wave and heavy snow etc.) as an institution responsible for the provision of public services such as public institutions, the socio-economic spread to the nation and the people The effect is very large. We confirmed the level of response to climate change for the entire public institution, and selected climate change risk which is relatively important for specific facilities and business establishments of public institutions, climate change adaptation measures We will try to utilize it as basic material of establishment.

Wave Climate at Hong-do and Mara-do Sea Areas (홍도와 마라도 해역에서의 파후에 대하여)

  • Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.71-81
    • /
    • 1998
  • In this paper the statistical characteristics of the waves at Hong-do and Mara-do are examined. The wane scatter diagrams of H/sub s/ and T/sub z/ and H/sub 1/3/and T/sub 1/3/ at two locations are given and various statistical characteristics of the ocean waves are examined. If the sea is not narrowband, the modified Rayleigh distribution introduced by Longuet-Higgins can be used for the individual wave height distribution. However the modified Rayleigh distribution has not been widely used due to the inconvenience of determining the empirical constant. In this paper a simple method to determine the empirical constant for the modified Rayleigh distribution is proposed. Extreme waves based on the measured wave data are estimated. There is no significant difference depending on the distribution functions. However the estimations of the extreme waves from H/sub s/ and H/sub 1/3/ show considerable difference.

  • PDF

Observation and Analysis of Radiation Characteristics According to the Type of City During the Summer Season - Focus on the Daegu Metropolitan City and the Surrounding Four Regions - (하절기 도시 유형별 복사특성 관측과 분석 -대구광역시와 인근 4개 지역을 중심으로-)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.21-31
    • /
    • 2015
  • The purpose of this study is to understand the characteristics of urban climate in several cities, from observing radiation according to wavelength band(UV, short and long wave radiation). Observation start from 5 May to 31 August 2013. The followings are the main results from this study. 1) In every observation area, greater amounts of short-wave radiation have been recorded in May compared to June. Even though the highest solar elevation occurs in June, May sees clearer days, which has attributed to the outcome. 2) The analysis concerning the correlation between ultraviolet radiation and shortwave radiation have revealed that regions closer to the Daegu area have stronger correspondence. 3) The time series of daily long-wave radiation shares a similar tendency with the time series of air temperature, and the maximum value was recorded at 14:00 and 15:00.

A Study on the Method of Urban Planning for Adaptation to Climate Change (기후변화 적응을 위한 도시계획 방안 연구)

  • Lee, Sung Hee;Kim, Jong Kon
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • This study aims to understand abnormal climate caused by impacts of climate change and to suggest the direction of urban planning focusing on adaptation to climate change. The study consists of theory consideration and case study(Chicago, Philadelphia, Seattle). As a result, the main impacts of climate change faced by urban areas are heat wave, precipitation, and drought. To prevent these impacts, it is important to prepare methods of urban planning as followings: planning for land use, park and green considering the climate patterns, establishing and managing water resources systems similar to the nature, securing renewable energy resources, and transportation facilities and exterior space with proof against climate. It is especially necessary to introduce infrastructures related to storm water, green roof, shading tree planting, green space, and permeable pavement. Finally, in order to realize urban planning for adaptation to climate change, it is needed to make the detailed and specific goal and strategy for the climate change adaptation plan and to extend the scope from the goals to an action plan, a detailed plan, and a design guideline.

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts (기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계)

  • Suh, Kyung-Duck;Kim, Seung-Woo;Mori, Nobuhito;Mase, Hajime
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2011
  • During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

The Effect of Antenna Pattern Measurement According to Radio Wave Environment on Data Quality of HF Ocean Radar (전파환경에 따른 안테나패턴 측정(APM) 결과가 고주파 해양레이더의 자료 품질에 미치는 영향)

  • Jae Yeob, Kim;Dawoon, Jung;Seok, Lee;Kyu-Min, Song
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • High-frequency (HF) radar measures sea surface currents from the radio waves transmitted and received by antenna on land. Since the data quality of HF radar measurements sensitively depend on the radio wave environment around antenna, Antenna Pattern Measurements (APM) plays an important role in evaluating the accuracy of measured surface currents. In this study, APM was performed by selecting the times when the background noise level around antenna was high and low, and radial data were generated by applying the ideal pattern and measured pattern. The measured antenna pattern for each case was verified with the current velocity data collected by drifters. The radial velocity to which the ideal pattern was applied was not affected by the background noise level around antenna. However, the radial velocity obtained with APM in the period of high background noise was significantly lower in quality than the radial velocity in a low noise environment. It is recomended that APM be carried out in consideration of the radio wave environment around antenna, and that the applied result be compared and verified with the current velocity measurements by drifters. If it is difficult to re-measure APM, we suggest using radial velocity in generating total vector with the ideal pattern through comparative verification, rather than poorly measured patterns, for better data quality.

Visualizing Spatial Information of Climate Change Impacts on Social Infrastructure using Text-Mining Method (텍스트마이닝 기법을 활용한 사회기반시설 기후변화 영향의 공간정보 표출)

  • Shin, Hana;Ryu, Jaena
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.773-786
    • /
    • 2017
  • This study was to analyze data of climate change impacts on social infrastructure using text-mining methodology, and to visualize the spatial information by integrating those with regional data layers. First of all, the study identified that the following social infrastructure; power, oil and resource management, transport and urban, environment, and water supply infrastructures, were affected by five kinds of climate factors (heat wave, cold wave, heavy rain, heavy snow, strong wind). Climate change impacts on social infrastructure were then analyzed and visualized by regions. The analysis resulted that transport and urban infrastructures among all kinds of infrastructure were highly impacted by climate change, and the most severe factors of the climate impacts on social infrastructure were heavy rain and heavy snow. In addition, it found out that social infrastructure located in Seoul and Gangwon-do region were relatively largely affected by climate change. This study has significance that atypical data in media was used to analyze climate change impacts on social infrastructure and the results were translated into spatial information data to analyze and visualize the climate change impacts by regions.

Wave Reflection over an Arbitrarily Varying Topography

  • Cho, Yong-Sik;Lee, Changhoon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.39-44
    • /
    • 1997
  • As wind waves generated in deep water approach nearshore zone, they experience various physical phenomena caused by bathymetric variations, nonlinear interactions among different wave components and interferences with man-made coastal structures. Among these, the bathymetric variations may play a significant role in the change of wave climate. The accurate calculation of reflection and transmission coefficients of incident waves over a bottom topography is indispensible for the proper and economical design of coastal structures. (omitted)

  • PDF