DOI QR코드

DOI QR Code

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts

기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계

  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Seung-Woo (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Mori, Nobuhito (Disaster Prevention Research Institute, Kyoto University) ;
  • Mase, Hajime (Disaster Prevention Research Institute, Kyoto University)
  • 서경덕 (서울대학교 건설환경공학부) ;
  • 김승우 (서울대학교 건설환경공학부) ;
  • ;
  • Received : 2011.01.28
  • Accepted : 2011.05.17
  • Published : 2011.06.30

Abstract

During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

케이슨 방파제의 설계는 구조물의 기능을 유지하면서 일정 피해를 허용하는 성능설계를 권장한다. 하지만 기존 성능설계 방법은 기후변화로 변화된 해양 환경을 설계에 반영하기 어려워 구조물의 수명 동안에 안정성을 보장할 수 없다. 따라서 본 연구에서는 대표적인 기후변화 효과인 해수면 상승과 파고의 증가를 고려한 시간 의존 성능설계를 수행하여 케이슨의 기대활동량과 파괴확률을 산정하였다. 특히, 해수면 상승과 파고의 증가가 시간의 함수로 표현되어 케이슨 활동에 대해 시간 의존 파괴확률을 계산하였다. 개발된 방법을 일본 동해안에 위치한 Hitachinaka항 동방파제에 적용하였다. 해수면 상승보다 파고의 증가가 구조물의 안정성에 훨씬 큰 영향을 주는 것으로 분석되었는데, 이는 해수면 상승 폭이 구조물 전면 수심에 비해 상대적으로 아주 작기 때문이다. 또한 설계자들의 실제적인 관심사인 기후변화에 의한 케이슨 단면 폭의 변화를 산정하였다. 구조물의 설계수명이 커질수록 단면 폭의 증가가 컸으며, 현재 폭이 약 22 m인 Hitachinaka 방파제 케이슨은 기후변화 효과인 파고의 선형 및 포물선 증가에 의해 단면 폭이 각각 0.5m와 1.5m 내외로 증가된다.

Keywords

References

  1. 김승우, 서경덕 (2009). 국내 케이슨 방파제의 허용활동량의 초과확률. 한국해안.해양공학회논문집, 21(6), 495-507.
  2. 김승우, 서경덕, 이철응, 박동헌 (2009). 국내 항만의 방파제 피복블록의 신뢰성 해석. 한국해안해양.공학회논문집, 21(1), 15-29.
  3. 해양수산부 (2005). 항만 및 어항 설계기준.
  4. Berkoff, J.C.W. (1972). Computation of combined refraction-diffraction. Proc. 13th Int. Conf. on Coastal Eng., ASCE, 471-490.
  5. Burcharth, H. F. (1992). Uncertainty related to environmental data and estimated extreme events. Final Report of PIANC Working Group 12, Group B, June 1992.
  6. Goda, Y. (2000). Random sea and design of maritime structures. 2 nd edition, World scientific, Singapore.
  7. Goda, Y. (2001). Performance-based design of caisson breakwaters with new approach to extreme wave statistics. Coastal Eng. J., 43, 289-316. https://doi.org/10.1142/S0578563401000384
  8. Goda, Y. (2003). Revisiting Wilson's formulas for simplified wind-wave prediction. J. Waterw., Port, Coast. and Ocean Eng. 129(2), 93-95. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:2(93)
  9. Goda, Y. and Takagi, H. (2000). A reliability design method of caisson breakwaters with optimal wave heights. Coastal Eng. J., 42, 357-387.
  10. Hong, S. Y., Suh, K. D. and Kweon, H. M. (2004). Calculation of expected sliding distance of breakwater caisson considering variability in wave direction. Coastal Eng. J., 46, 119-140. https://doi.org/10.1142/S0578563404000987
  11. JPHA (2007). Japan Port and Harbor Association, Technical Standards for Port and Harbor Facilities in Japan (in Japanese).
  12. Karlson, T. (1969). Refraction of continuous ocean wave spectra. Proc. ASCE, 95, No. WW4, 471-490.
  13. Kim, S.W. and Suh, K.D. (2006). Application of reliability design methods to Donghae harbor breakwater. Coastal Eng. J., 48, 31-57. https://doi.org/10.1142/S0578563406001325
  14. Kim, T. M. and Takayama, T. (2003). Computational improvement for expected sliding distance of a caisson-type breakwater by introduction of a doubly-truncated normal distribution. Coastal Eng. J., 45, 387-419. https://doi.org/10.1142/S0578563403000816
  15. Mori, N., Shimura, Y., Yasuda, T. and Mase, H. (2010a). Projection of extreme waves under a global warming scenario. Annual Journal of Coastal Eng., JSCE, 57, 1231-1235 (in Japanese).
  16. Mori, N., Yasuda, T., Mase, H., Tom, T. and Oku, Y. (2010b). Projection of extreme wave climate change under the global warming. Hydrological Research Letters 4, 15-19. https://doi.org/10.3178/hrl.4.15
  17. Mori, N., Shimura, Y., Nakajo, S., Yasuda, T. and Mase, H. (2011). Projection of coastal climate change due to global warming. DPRI Report, Kyoto University (in preparation).
  18. Nagao, T., Kadowaki, Y. and Terauchi, K. (1995). Evaluation of safety of breakwaters by the reliability based design method (1st report: Study on the safety against sliding). Report of Port and Harbor Research Institute, 34(5), 40-70 (in Japanese).
  19. Okayasu, A. and Sakai, K. (2006). Effect of sea level rise on sliding distance of a caisson breakwater: Optimization with probabilistic design method. Proc. 30 th Int. Conf. on Coastal Eng., ASCE, San Diego, USA, 4883-4893.
  20. Oumeraci H., Kortenhaus A., Allsop W., de Groot M., Crouch R., Vrijling H. and Voortman H. (2001). Probabilistic design tools for vertical breakwaters. Sweta & Zeitlinger B.V., Lisse.
  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical Recipes in FORTRAN: the Art of Scientific Computing. Cambridge Univ. Press.
  22. Suh, K.D., Kwon, H.D. and Lee, D.Y. (2010). Some statistical characteristics of large deepwater waves around the Korean Peninsula. Coastal Eng., 57(4), 375-384. https://doi.org/10.1016/j.coastaleng.2009.10.016
  23. Shimosako, K. and Takahashi, S. (2000). Application of deformation- based reliability design for coatal structures. Proc. Int. Conf. Coastal Struct., A. A. Balkema, Spain, 363-371.
  24. Takahashi, S., Shimosako, K., and Kimura, K. and Suzuki, K. (2000). Typical failure of composite breakwaters in Japan. Proc. 27 th Int. Conf. on Coastal Eng., ASCE, Sydney, Australia, 1899-1910.
  25. Takata, E., Morohoshi, K., Hiraishi, T., Nagai, T. and Takemura, S. (2003). Distributions of the wave, storm surge and tsunami design conditions on Japanese nationwide coastal structures. Technical Note No. 88, National Institute for Land and Infrastructure Management, Japan, ISSN 1346-7328.
  26. Takayama, T. and Ikeda, N. (1993) Estimation of sliding failure probability of present breakwaters for probabilistic design. Report of the Port and Harbour Research Institute, 31(5).
  27. U.S. Army Coastal Engrg. Res. Center (1977). Shore Protection Manual 3rd ed., U.S. Government Printing Office, Washington, D.C., USA.

Cited by

  1. Influence of Water Depth on Climate Change Impacts on Caisson Sliding of Vertical Breakwater vol.24, pp.3, 2012, https://doi.org/10.9765/KSCOE.2012.24.3.179