• Title/Summary/Keyword: wave breaking point

Search Result 37, Processing Time 0.022 seconds

Research on Wave Kinematics and Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 관한 연구)

  • Lee, Soo-Lyong;Kang, Byung-Yoon;Lee, Byeong-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.18-24
    • /
    • 2007
  • When the wind blows strong, most waves are breaking at sea. Breaking waves occur by exceeding the limitation of wave steepness (wave height/wave length = 1/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at a two-dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies based on dispersion relation. This study investigates the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force at the breaking point and breaking region. We compare the regular wave load in a regular wave, which has same specifications (wave height, period and length), with the breaking waveload. Also, the experimental results of wave exciting force and particle velocity are investigated, by comparison with the analytic results using the potential theory.

Research on Wave Kinematics & Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 대한 연구)

  • LEE BYEONG-SEONG;JO HYO-JAE;GOO JA-SAM;KANG BYUNG-YOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • When the wind blows hard, most waves are breaking in sea. Breaking waves occur, exceeding limitation of wave steepness(wave height/wave length=l/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at two dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies. We research how are the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force. We compare the force in a regular wave which has same specifications(wave height, period and length) as the breaking wave. Also the experimental results of wave exciting force and particle velocity are investigated by comparison on the analytic results using the potential theory.

  • PDF

Wave Breaking in Shallow Waters (천해역에서의 쇄파)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 1990
  • A local Iribarren number is suggested for the universal use of breaker type classification, which relates the bed slope to the wave steepness, both being given from the breaking point. The existing Iribarren number uses the wave length at an offshore point, while the local Iribarren number uses the wave length at the breaking point so that it can imply any influences due to current interaction and diffraction. The modified form of Miche's breaking criterion includes 고 breaking parameter which may be related to the local Iribarren number. Using the modifiedform of Miche's criterion with the local Iribarren number, the inclusion of Doppler effect seems to describe well the wave breaking mechanism in a current-interacted flow on a sloping beach without any additional effects implemented.

  • PDF

Breaking Wave Generation in the Laboratory (실험실에서의 쇄파발생)

  • Cho, Won-Chul;Michael Bruno
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.178-186
    • /
    • 1992
  • An experimental study of deep-water breaking waves are performed by superposition of different wave frequencies, faster waves overtaking slow waves at a certain location. Large spilling and plunging breaking waves are generated near the expected breaking location. Wave steepness in spilling and plunging breakers significantly increases as the breaking point is approached and then decreases after breaking. Larger growth rate of the wave steepness in vigorous plunging breaking is observed. The fundamental wave frequencies in a wave group are dominant through the wave evolution, even in an intense plunging breaking event.

  • PDF

Wave Breaking Characteristics over Composite Slope Section (복합단면지형에서의 파랑의 쇄파변형특성)

  • 권혁민;요시미고다;최한규
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 1995
  • The procedure of wave energy dissipation due to breaking has been investigated with trains of the regular wave. To obtain the data for wave breaking and its deformation, experiments have been conducted by utilizing a horizontal step adjoining to a combined slope of 1/20 and 1/10. After breaking the wave height decreases by dissipation but attains a stable value at some distance from the breaking point Experimental results show that the stable wave is considerably affected by the wave period. The study gives the general form of stable wave height A new one-dimensional wave deformation model is proposed. being coupled with an approximated shoaling coefficient before wave breaking and the new energy dissipation term after breaking. It was compared with the experimental data. It predicts well the wave height deformation before and after wave breaking even on the abrupt change of the depth.

  • PDF

Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes (다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산)

  • 홍기용;에스똘히오메자
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

Wave Breaking Characteristics due to Shape and Plane Arrangement of the Submerged Breakwaters (잠제 제원 및 평면배치에 따른 쇄파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo;Huh, Jung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • The aim of this study is to examine the effects of shape and plane arrangement of submerged breakwaters on 3-D wave breaking characteristics over them. First, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D), has been validated by a comparison with Goda's equation for breaking wave heights. And then, using the numerical results, the wave breaking points over the crest of submerged breakwaters have been examined in relation to the shape and plane arrangement of submerged breakwaters. Moreover, the wave height distribution and upper flow around submerged breakwaters have been also discussed, as well as the distribution of the wave breaking points over the beach.

An Experimental Study on Wave Energy Variation through Breaking Processes (쇄파과정에서의 파랑에너지 변화에 관한 실험연구)

  • Cho, Won-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.157-163
    • /
    • 1994
  • An experimental study of deep-water breaking waves is performed by nonlinear wave evolution as well as superposition of different wave frequencies. Two-dimensional and three-dimensional wave instabilities and breakings are observed in nonlinear wave evolution. The wave energy evolves with almost the same initial wave energy before breaking but decreases significantly after breaking process. Large spilling and plunging waves are generated near e expected breaking location by means of faster waves overtaking slow waves at a certain point. More energy loss in vigorous plunging breakers is observed through breaking process.

  • PDF

Characteristics of Equilibrium Beach Profile under Random Waves (불규칙파랑 효과를 고려한 평형단면의 특성)

  • Lee, Cheol-Eung;Choi, Han-Kyu;Han, Chun-Ho
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.83-95
    • /
    • 1996
  • The equilibrium beach profiles with the effects of random waves and nonuniform grain size in the surf zone are derived from the Thornton and Guza(1983)'s energy dissipation model. The derived beach profiles are the functions of the breaking wave strength, the frequency of the incident wave, and the wave induced-energy dissipation at breaking point. It is not confirmed that the equilibrium beach profiles are better agreement with the measured profiles than the classical profiles. However, the characteristic of the changes of the beach profiles with respect to the breaking wave stgrngth and the frequency of the incident wave can be analyzed which has not been studied by the classical model.

  • PDF

Lift of and Wave Breaking behind a Moving Submerged Body with Shallow Submergence

  • Lee, Seung-Joon;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • We consider the following two questions mainly in this study. First one is how the free surface hayes affect the lift of a shallowly submerged moving body. For this matte., we reinterpret the theoretical results of Kochin(1936), and point out that the high Froude number approximation is not always on the safer side. Second one is what sort of dimensionless parameters determine the occurrence of wave breaking behind a moving submerged body. Temporarily before getting a better answer, we propose that the two-parameter-plane, namely, the plane of the Froude number and the square root of the ratio of the submerged depth and the body length, may be used for predicting the possibility of wave breaking behind the submerged body. A region in the parameter plane is put forth as that of wave breaking, and the validity of this proposal is shown by its agreement with the existing experimental data of Parkin et al(1955) and those of Duncan(1983). Finally, linear and nonlinear numerical results are compared with the existing experimental data to see in what range of the parameters the linear and nonlinear theory case predict the wave field and the pressure on the body with reasonable accuracy. However, since the experimental data, which offer both the pressure and wave elevation for a submerged moving body, are very scarce, much cannot be attained through this comparative study. Hence, it is strongly recommended to carry out well planned experiments to get such data.

  • PDF