• 제목/요약/키워드: wave board motion

검색결과 15건 처리시간 0.028초

다기능 조파기의 조파 운동과 발생 파형 (Wave and Wave Board Motion of Hybrid Wave Maker)

  • 김효철;오정근;류재문;이신형;김재헌
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.339-347
    • /
    • 2021
  • Piston type wave makers or flap type wave makers are usually adopted as a wave maker which disturbing the fluid domain with sinusoidal motion. Recently hybrid wave maker which could be operated as not only piston type and/or flap type but also swing type wave maker have been devised by utilizing the link mechanism. The wave board of hybrid wave maker has been devised to be independently controlled by the horizontal actuators on upper and lower end of the wave board. The wave board could operate as a flap type wave board when the lower hinge is in a stationary condition and the upper hinge is operated with sinusoidal motion. On the contrary, the swing type wave board could be obtained by the lower hinge is activated and the upper hinge is in a stationary condition. When both end of the wave board is activated in a synchronized condition, the wave board motion become piston motion. In addition the hybrid wave maker could enhance the piston motion with flap motion or swing motion by selecting control parameters. Various wave board motion of hybrid wave maker and relevant wave form have measured on the wave board and departed location. It is appeared that the novel hybrid wave maker could be utilized for the improvement of wave qualities in experiments.

신형식 다기능 조파기 설계 (On the Design of Novel Hybrid Wave Generator)

  • 김효철;오정근
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.112-120
    • /
    • 2021
  • The novel wave generating system of a wave flume has been devised by utilizing the analytic solution of wave board motion in idealized two dimensional space. The arbitrary oscillation motion of submerged wave board segment has been defined by sinusoidal motion of upper and lower end of the wave board. The analytic solution of the wave board motion has been represented by the solution of board motion due to flap motion and swing motion. Arbitrary oscillation of the board could be specified by determining amplitude, frequency, and the phase lag. A novel hybrid wave generator could be operated not only in piston motion but also in flap or swing motion by selection of control parameter. The wave generator has unique motion enhancing ability by appending flap motion or swing motion to piston motion in wave generation. In addition the hybrid wave generator has advantages in generating high quality wave spectrum of irregular wave in simulating real sea condition.

조파판 수중운동의 근사해석과 조파기 설계에 응용 (Simplified Analytic Solution of Submerged Wave Board Motion and Its Application on the Design of Wave Generator)

  • 권종오;김효철;류재문;오정근
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.461-469
    • /
    • 2017
  • A segment of the wave board has been expressed as a submerged line segment in the two dimensional wave flume. The lower end of the line segment could be extended to the bottom of the wave flume and the other opposite upper end of the board could be extended to the free surface. It is assumed that the motion of the wave board could be defined by the sinusoidal motion in horizontal direction on either end of the wave board. When the amplitude of sinusoidal motion of the wave board on lower and upper end are equal, the wave board motion could express the horizontally oscillating submerged segment of piston type wave generator. The submerged segment of flap type wave generator also could be expressed by taking the motion amplitude differently for the either end of the board. The pivot point of the segment motion could play a role of hinge point of the flap type wave generator. Simplified analytic solution of oscillating submerged wave board segment in water of finite depth has been derived through the first order perturbation method at two dimensional domain. The case study of the analytic solution has been carried out and it is found out that the solution could be utilized for the design of wave generator with arbitrary shape by linear superposition.

상하단이 자유롭게 수평동요하는 수중 조파판에 의해 생성된 수면파의 근사해석 (Linear Analysis of Water Surface Waves Generated by Submerged Wave Board Whose Upper and Lower Ends Oscillate Horizontally Freely)

  • 김효철;오정근;권종오;류재문
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.418-426
    • /
    • 2019
  • To derive a simplified analytic solution which can be utilized as a fundamental solution for the wave maker design, a segment of the wave board has been idealized as a submerged line segment in a two dimensional domain of a wave flume. The lower end of the line segment could be located at arbitrary depth of the wave flume and the upper end of the board could be also submerged to any depth from the free surface. The freely oscillating motion of the wave board is assumed to be defined by determining the condition of horizontal oscillation on both ends differently. The submerged wave board oscillating in horizontal direction could be specified by selecting the amplitude, frequency and the phase lag differently on lower and upper ends of the board. The simplified two dimensional wave generated by the wave board segment has been obtained by the first order perturbation method. It is found that the general solution of the freely oscillating wave board in two dimensional domain could be decomposed into the solution of flap motion with lower end hinge and swing motion with upper end hinge. The case study of the analytic solutions has been carried out to evaluate the effect on the wave height due to the difference of oscillation frequency, phase difference and variation of stroke between for the motion of both ends. It is found that the solution of the freely oscillating wave board could be utilized for the development of high performance wavemaker especially for irregular waves.

수직 평판 요소의 수중동요 근사해와 설계 적용 (Approximate Solution of Vertical Wave Board Oscillating in Submerged Condition and Its Design Application)

  • 오정근;김주열;김효철;권종오;류재문
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.527-534
    • /
    • 2018
  • The segment of the piston type wave board has been expressed as a submerged vertical line segment in the two dimensional wave flume. Either end of vertical line segment representing wave board could be located in fluid domain from free surface to the bottom of the flume. Naturally the segment could be extended from the bottom to the free surface of the flume. It is assumed that the piston motion of the wave board could be defined by the sinusoidal oscillation in horizontal direction. Simplified analytic solution of the submerged segment of wave board has been derived through the first order perturbation method in water of finite depth. The analytic solution has been utilized in expressing the wave generated by the piston type wave board installed on the upper or lower half of the flume. The wave form derived by the analytic solution have been compared with the wave profile obtained through the CFD calculation for the either of the above cases. It is appeared that the wave length and the wave height are coincided each other between analytic solution and CFD calculation. However the wave form obtained by CFD calculations are more closer to real wave form than those from analytic calculation. It is appeared that the linear solutions could be not only superposed by segment but also integrated by finite elements without limitation. Finally it is proven that the wave generated by the oscillation of flap type wave board could be derived by integrating the wave generated by the sinusoidal motion of the finite segment of the piston type wave board.

유전자 알고리즘을 이용한 설계파 생성 및 해석 시스템 구축 (Construction of a System for the Generation and Analysis of Design Waves using the Genetic Algorithms)

  • 정성재;신종근;최진
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.96-102
    • /
    • 2006
  • In this study, an optimization routine with genetic algorithms is coupled for the selection of free variables for the production of a control signal for the motion of wave board in the numerical wave tank. An excitation function for the controlling of the wave board is formulated on basis of amplitude modulation for the generation of nonlinear wave packets. The found variables by the optimization serve for the determination of wave board motion both with the computation and with the experiment. The breaking criterion of the water waves is implemented as boundary condition for the optimization procedure. With the analysis of the time registration on the local position in the wave tank the optimization routine is accomplished until the given design wave with defined surface elevation is found. Water surface elevation and associated fields of velocity and pressure are numerically computed.

실선 시험에 의한 소성어업의 동요특성 (Experimental analysis on the motion response of the small fishing boat toward wave direction)

  • 강일권;윤점동
    • 한국항해학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 1995
  • The motion of a small boat in seas is affected in relatively higher degrees than the case of a larger ship by the specific characteristics of sea waves, i.e., the wave length and height. Ship's motion caused by sea waves is a matter of special importance to small fishing boats, because they carry out fishing job in rough seas frequently. This is an experimental study on the rolling and pitching motions of full scale ship. In the experiment, the ship's motions were measured for head, how, beam, quarter and following seas. The experiment were carried out on board the training ship Pusan 404(160 GT) in the adjacent waters off NAM HYENG JAE DO on Dec. 13th 1994. The sea condition during the measurements was that wave height 2.5m, no swell and the wind velocity of 12 m/sec. Some statistic considerations were given to the observed data by the series analysis methods and discussed in this paper.

  • PDF

추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究) (Wave Exciting Forces Acting on Ships in Following Seas)

  • 손경호;김진안
    • 대한조선학회지
    • /
    • 제21권3호
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • 제7권4호
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

비선형(非線形) 조파이론(造波理論) (Nonlinear Theory for Laboratory Wave Generation)

  • 김태인
    • 대한토목학회논문집
    • /
    • 제12권4_1호
    • /
    • pp.137-150
    • /
    • 1992
  • 가변흘수(可變吃水)를 갖는 힌지형(型) 조파기(造波機)에 의한 조파현상(造波現像)을 다룬 2차해(次解)가 제시(提示)되었다. 피스톤형(型) 조파기(造波機)의 경우도 무한흘수(無限吃水)를 갖는 힌지형(型) 조파기(造波機)의 경우로서 함께 취급되었다. 2차해는 평면조파판(平面造波板)에 의해 생성(生成)되는 파(波)가 서로 다른 파속(波速)을 갖는 스토우크스 2차파(次波)와 2차자유진행파(次自由進行波)로 구성(構成)됨을 보여준다. 2차(次) 자유진행파(自由進行波)의 진폭(振幅)은 천해영역(淺海領域)에서 상대적으로 크고, 심해영역(深海領域)에서는 스토우크파(波) 진폭(振幅)의 10% 이내로 감소(減少)한다. 깊은 흘수(吃水)를 갖는 (수로(水路)바닥 가까이 힌지점(点)에 있는) 조파기(造波機)일수록 천해(淺海)와 중간수심(中間水深) 영역(領域)에서 진폭(振幅)이 작은 자유진행파(自由進行波)를 생성(生成)하나, 심해역(深海域)에서는 그와 반대의 현상(現像)을 보인다.

  • PDF