• 제목/요약/키워드: wave attenuation

검색결과 469건 처리시간 0.027초

표면SH파를 이용한 2.25Cr-1Mo강의 열화.손상 평가 (Nondestructive Evaluation for Degraded 2.25Cr-1Mo Steel though Surface SH-wave)

  • 김현묵;박익근;박은수;안형근;김정석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.280-285
    • /
    • 2000
  • It is very important to evaluate the surface or subsurface microstructure because of their influences on mechanical properties of materials. Surface SH-wave which is horizontally polarized shear wave traveling along near surface and subsurface layer is an attractive technique for material evaluation. The destructive method is widely used for the estimation of material degradation but it has a great difficulty in preparing specimens from in-service industrial facilities. In this study, nondestructive evaluation for degraded structural materials used at high temperature though surface SH-wave method is discussed. 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $650^{\circ}$ were evaluated though ultrasonic nondestructive evaluation techniques investigating the change of sound velocity, attenuation coefficient and amplitude spectra. In addition, it has verified experimentally the frequency-dependence of attenuation coefficient though wavelet analysis method.

  • PDF

UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발 (The Underwater UUV Docking with 3D RF Signal Attenuation based Localization)

  • 곽경민;박대길;정완균;김진현
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

연안해역에서의 수변식생에 의한 파란변형에 관한 수치해석 (Numerical Analysis for Wave Propagation with Vegetated Coastal Area)

  • 이성대
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.63-68
    • /
    • 2006
  • Recently, it has been widely recognized that coastal vegetations may have great value in supporting fisheries, protecting from wave attack, stabilizing the sea bed and maintaining good scenery. Hydrodynamic factors play a major role in the functions of water quality and ecosystems. However, the studies on physical and numerical process of wave propagation are few and far behind compared to those on the hydrodynamic roles of coastal vegetations. In general, Vegetation flourishing along the coastal areas attenuates the incident waves, through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation rate in the complex topography with the vegetation area. Based on the numerical results, the physical properties of the wave attenuation are examined under various wave, geometric and vegetation conditions. Through the comparisons of these results, the effects of the vegetation properties, wave properties and model parameters such ac the momentum exchange coefficient have been clarified.

EFFECTS OF PARTICLE RESONANCE ON DISPERSION OF ELASTIC WAVES IN PARTICULATE COMPOSITES

  • Kim, J.Y.;Ih, J.G.;Lee, B.H.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.734-739
    • /
    • 1994
  • Elastic wave propagation in discrete random medium is studied to evaluate the effects of particle resonance on dispersion and attenuation of composite materials containing spherical inclusions. The frequency-dependent wave speed and attenuation coefficient can be obtained from proposed self-consistent method. It can be observed that the abrupt increase of effective wave speed and the concurrent peak of attenuation at low frequency is due to the lowest resonance of particles, whereas those in high frequency region are due to higher ones. The lowest resonance is mainly caused by the density mismatch and higher resonances by the stiffness mismatch between matrix and particles. The dispersion and attenuation of elastic waves in particulate composites are affected by the lowest resonance much than by higher ones.

  • PDF

페라이트-유전체 적층형 전파흡수체 (Electromagnetic Wave Absorber of Laminated Ferrite and Dielectrics)

  • 김경용;김왕섭;주윤돈;정형진
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.483-487
    • /
    • 1991
  • Ferrite electromagnetic wave absorber whose attenuation ability are mainly relied on their magnetic loss, has been used in relatively narrow wave frequency ranges. In this study, we tried to produce a wide-range electromagnetic wave absorber by laminating sintered ferrite (Mn0.07Ni0.28Zn0.65Fe2O4) and dielectrics (Cordierite). We also investigated effects of dielectric constant and thickness on the attenuation behavior of the absorber. Applicable band width, in which the attenuation is greater than 20 dB can be widened from 100∼700 MHz of ferrite alone to 100∼900MHz by employing the laminated structure. Thickness of dielectrics to achieve wide-range application decreased as the dielectric constant increased.

  • PDF

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

Waveform characterization and energy dissipation of stress wave in sandstone based on modified SHPB tests

  • Cheng, Yun;Song, Zhanping;Jin, Jiefang;Wang, Tong;Yang, Tengtian
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.187-196
    • /
    • 2020
  • The changeable stress environment directly affect the propagation law of a stress wave. Stress wave propagation tests in sandstone with different axial stresses were carried using a modified split Hopkinson Pressure bar (SHPB) assuming the sandstone has a uniform pore distribution. Then the waveform and stress wave energy dissipation were analyzed. The results show that the stress wave exhibits the double peak phenomenon. With increasing axial stress, the intensity difference decreases exponentially and experiences first a dramatic decrease and then gentle development. The demarcation stress is σ/σc=30%, indicating that the closer to the incident end, the faster the intensity difference attenuates. Under the same axial stress, the intensity difference decreases linearly with propagation distance and its attenuation intensity factor displays a quadratic function with axial stress. With increasing propagation distance, the time difference decays linearly and its delay coefficient reflects the damage degree. The stress wave energy attenuates exponentially with propagation distance, and the relations between attenuation rate, attenuation coefficient and axial stress can be represented by the quadratic function.

Measurement of Rainfall Characteristics and Rain-Attenuation at 38 GHz in Worst Months Affected by El Nino Signal in 1998

  • Jang Won-Gyu;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • 제5권4호
    • /
    • pp.189-192
    • /
    • 2005
  • The measurement of unique rainfall phenomenon and rain attenuation on 38 GHz terrestrial links at South Korea in 1998 is presented. It was one of the most severe rainfall years at the measured region due to increased EI Nino signal. The rainfall rate exceeded at $0.01\%$ was 97.4 mm/h during a worst month and annual rate was 63.5 mm/h. Experimentally measured results have been compared with some models and found that the rain attenuation by system level was underestimated by the existing prediction models. As it was measured only three months, further study and measurement of rainfall and rain attenuation in this region are needed for stable millimeter-wave system operation at all times.

Attenuation of Fundamental Longitudinal Guided Wave Mode in Steel Pipes Embedded in Soil

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae
    • 비파괴검사학회지
    • /
    • 제30권6호
    • /
    • pp.539-547
    • /
    • 2010
  • In this study, characteristics of the fundamental longitudinal guided wave mode, L(0,1), which is a usual mode employed in the inspection of the above-ground pipe, of the buried pipe were numerically investigated considering property changes in the surrounding soil. Results showed that soil conditions are significantly affecting the attenuation of L(0,1) mode in the pipe embedded in soil. Especially, if the soil is partially saturated, the attenuation of L(0,1) mode is larger and is very similar regardless of the degree of water saturation in the surrounding soil. However, when the soil is fully saturated, the attenuation of L(0,1) mode is less and show different trend with its partially saturated counterparts.