• Title/Summary/Keyword: watermark-adaptive

Search Result 93, Processing Time 0.023 seconds

Adaptive Watermark Detection Algorithm Using Perceptual Model and Statistical Decision Method Based on Multiwavelet Transform

  • Hwang Eui-Chang;Kim Dong Kyue;Moon Kwang-Seok;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.783-789
    • /
    • 2005
  • This paper is proposed a watermarking technique for copyright protection of multimedia contents. We proposed adaptive watermark detection algorithm using stochastic perceptual model and statistical decision method in DMWT(discrete multi wavelet transform) domain. The stochastic perceptual model calculates NVF(noise visibility function) based on statistical characteristic in the DMWT. Watermark detection algorithm used the likelihood ratio depend on Bayes' decision theory by reliable detection measure and Neyman-Pearson criterion. To reduce visual artifact of image, in this paper, adaptively decide the embedding number of watermark based on DMWT, and then the watermark embedding strength differently at edge and texture region and flat region embedded when watermark embedding minimize distortion of image. In experiment results, the proposed statistical decision method based on multiwavelet domain could decide watermark detection.

  • PDF

An Adaptive Watermark Detection Algorithm for Vector Geographic Data

  • Wang, Yingying;Yang, Chengsong;Ren, Na;Zhu, Changqing;Rui, Ting;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.323-343
    • /
    • 2020
  • With the rapid development of computer and communication techniques, copyright protection of vector geographic data has attracted considerable research attention because of the high cost of such data. A novel adaptive watermark detection algorithm is proposed for vector geographic data that can be used to qualitatively analyze the robustness of watermarks against data addition attacks. First, a watermark was embedded into the vertex coordinates based on coordinate mapping and quantization. Second, the adaptive watermark detection model, which is capable of calculating the detection threshold, false positive error (FPE) and false negative error (FNE), was established, and the characteristics of the adaptive watermark detection algorithm were analyzed. Finally, experiments were conducted on several real-world vector maps to show the usability and robustness of the proposed algorithm.

Adaptive Watermarking Method using Watermark Detection Rate (워터마크 검출율에 기반한 적응적 워터마킹 방법)

  • An, Il-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.465-470
    • /
    • 2010
  • This paper proposes an adaptive video watermarking algorithm according to bit detection rate of watermark in MPEG2 system. The watermark strength is adaptively applied as BER(bit error rate) of watermark extracted from decoded frame for motion compensation. Watermark insertion uses a frequency spread spectrum method. A realtime watermark extraction is done directly in the DCT domain during MPEG decoding. The experimental simulations show that PSNR(peak signal to noise ratio) results 31.5dB for a fixed watermark strength and 33.dB for an adaptive watermark strength. Also average BER is 0.126 and less than 0.2 avaliable value.

Content Adaptive Watermarkding Using a Stochastic Visual Model Based on Multiwavelet Transform

  • Kwon, Ki-Ryong;Kang, Kyun-Ho;Kwon, Seong-Geun;Moon, Kwang-Seok;Lee, Joon-Jae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1511-1514
    • /
    • 2002
  • This paper presents content adaptive image watermark embedding using stochastic visual model based on multiwavelet transform. To embedding watermark, the original image is decomposed into 4 levels using a discrete multiwavelet transform, then a watermark is embedded into the JND(just noticeable differences) of the image each subband. The perceptual model is applied with a stochastic approach fer watermark embedding. This is based on the computation of a NVF(noise visibility function) that have local image properties. The perceptual model with content adaptive watermarking algorithm embed at the texture and edge region for more strongly embedded watermark by the JND. This method uses stationary Generalized Gaussian model characteristic because watermark has noise properties. The experiment results of simulation of the proposed watermark embedding method using stochastic visual model based on multiwavelet transform techniques was found to be excellent invisibility and robustness.

  • PDF

An adaptive watermarking for remote sensing images based on maximum entropy and discrete wavelet transformation

  • Yang Hua;Xu Xi;Chengyi Qu;Jinglong Du;Maofeng Weng;Bao Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.192-210
    • /
    • 2024
  • Most frequency-domain remote sensing image watermarking algorithms embed watermarks at random locations, which have negative impact on the watermark invisibility. In this study, we propose an adaptive watermarking scheme for remote sensing images that considers the information complexity to select where to embed watermarks to improve watermark invisibility without affecting algorithm robustness. The scheme converts remote sensing images from RGB to YCbCr color space, performs two-level DWT on luminance Y, and selects the high frequency coefficient of the low frequency component (HHY2) as the watermark embedding domain. To achieve adaptive embedding, HHY2 is divided into several 8*8 blocks, the entropy of each sub-block is calculated, and the block with the maximum entropy is chosen as the watermark embedding location. During embedding phase, the watermark image is also decomposed by two-level DWT, and the resulting high frequency coefficient (HHW2) is then embedded into the block with maximum entropy using α- blending. The experimental results show that the watermarked remote sensing images have high fidelity, indicating good invisibility. Under varying degrees of geometric, cropping, filtering, and noise attacks, the proposed watermarking can always extract high identifiable watermark images. Moreover, it is extremely stable and impervious to attack intensity interference.

Adaptive Image Watermarking Using a Stochastic Multiresolution Modeling

  • Kim, Hyun-Chun;Kwon, Ki-Ryong;Kim, Jong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.172-175
    • /
    • 2002
  • This paper presents perceptual model with a stochastic rnultiresolution characteristic that can be applied with watermark embedding in the biorthogonal wavelet domain. The perceptual model with adaptive watermarking algorithm embed at the texture and edge region for more strongly embedded watermark by the SSQ(successive subband quantization). The watermark embedding is based on the computation of a NVF(noise visibility function) that have local image properties. This method uses non-stationary Gaussian model stationary Generalized Gaussian model because watermark has noise properties. In order to determine the optimal NVF, we consider the watermark as noise. The particularities of embedding in the stationary GG model use shape parameter and variance of each subband regions in multiresolution. To estimate the shape parameter, we use a moment matching method. Non-stationary Gaussian model use the local mean and variance of each subband. The experiment results of simulation were found to be excellent invisibility and robustness. Experiments of such distortion are executed by Stirmark benchmark test.

  • PDF

Deep Learning Framework for Watermark-Adaptive and Resolution-Adaptive Image Watermarking (워터마크 및 해상도 적응적인 영상 워터마킹을 위한 딥 러닝 프레임워크)

  • Lee, Jae-Eun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.166-175
    • /
    • 2020
  • Recently, application fields for processing and using digital image contents in various forms and types are rapidly increasing. Since image content is high value-added content, the intellectual property rights of this content must be protected in order to activate the production and use of the digital image content. In this paper, we propose a deep learning based watermark embedding and extraction network. The proposed method is to maximize the robustness of the watermark against malicious/non-malicious attacks while preserving the invisibility of the host image. This network consists of a preprocessing network that changes the watermark to have the same resolution as the host image, a watermark embedding network that embeds watermark data while maintaining the resolution of the host image by three-dimensionally concatenating the changed host image and the watermark information, and a watermark extraction network that reduces the resolution and extracts watermarks. This network verifies the invisibility and robustness of the proposed method by experimenting with various pixel value change attacks and geometric attacks against various watermark data and host images with various resolutions, and shows that this method is universal and practical.

The Robustness Wavelet Watermarking with Adaptive Weight MASK (적응 가중치 마스크 처리 기반 강인한 웨이브릿 워터마킹)

  • 정성록;김태효
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.46-52
    • /
    • 2003
  • In this paper, the wavelet watermarking algorithm based on adaptive weight MASK processing as a watermark embedded-method for Copyright Protection of Digital contents is Proposed. Because watermark induce as a noise of original image, the watermark size should be limited for preventing quality losses and embedding watermark into images. Therefore, it should be preserve the best condition of the factors, robustness, capacity and visual quality. Tn order to solve this problem, we propose watermarking embedded method by applying adaptive weight MASK to the algorithm and optimize its efficiency. In that result, the watermarked images are improved about external attack. Specifically, correlation coefficient has over 0.8 on both modifications of brightness and contrast. Also, correlation coefficient of wavelet compression of embedded watermark last by over 0.65.

  • PDF

Adaptive Watermarking Using Successive Subband Quantization and Perceptual Model Based on Multiwavelet Transform Domain (멀티웨이브릿 변환 영역 기반의 연속 부대역 양자화 및 지각 모델을 이용한 적응 워터마킹)

  • 권기룡;이준재
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1149-1158
    • /
    • 2003
  • Content adaptive watermark embedding algorithm using a stochastic image model in the multiwavelet transform is proposed in this paper. A watermark is embedded into the perceptually significant coefficients (PSCs) of each subband using multiwavelet transform. The PSCs in high frequency subband are selected by SSQ, that is, by setting the thresholds as the one half of the largest coefficient in each subband. The perceptual model is applied with a stochastic approach based on noise visibility function (NVF) that has local image properties for watermark embedding. This model uses stationary Generalized Gaussian model characteristic because watermark has noise properties. The watermark estimation use shape parameter and variance of subband region. it is derive content adaptive criteria according to edge and texture, and flat region. The experiment results of the proposed watermark embedding method based on multiwavelet transform techniques were found to be excellent invisibility and robustness.

  • PDF

Low-Complexity Watermarking into SAO Offsets for HEVC Videos

  • Wu, Xiangjian;Jo, Hyun-Ho;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.243-249
    • /
    • 2016
  • This paper proposes a new watermarking algorithm to embed watermarks in thr process of sample adaptive offsets (SAO) for high efficiency video coding (HEVC) compressed videos. The proposed method embeds two-bit watermark into the SAO offsets for each coding tree unit (CTU). To minimize visual quality degradation caused by embedding watermark, watermark bits are embedded into SAO offset depending on the SAO types of block. Furthermore, the embedded watermark can be extracted by simply adding four offsets and checking their least significant bits (LSB) at the decoder side. The experimental results show that the proposed method achieves 0.3% BD-rate increase without much visual quality degradation. Two-bit watermark for each CTU is embedded for more bit watermarking. In addition, the proposed method requires negligible computational load for watermark insertion and extraction.