• Title/Summary/Keyword: waterline

Search Result 77, Processing Time 0.023 seconds

Development of Dry Process Caisson Method for Maintenance of Submerged Harbor Structure (수중 항만구조물의 유지보수를 위한 건식 케이슨 공법 개발)

  • Lee Joong-Woo;Oh Dong-Hoon;Kwak Seung-Kyu;Kim Sung-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.163-170
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction of 9 new ports and renovation of the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built of steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions of structures and increased underwater construction period. For the purpose of cutting down the expense of government budget, it is necessary to extend the life cycle of the existing structures. Therefore, we developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction maintenance expenses and time for anti-corrosion work but also better protection. This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

  • PDF

Effects of Flushing in Dental Unit Waterlines on the Bacterial Contamination Level (치과용 유니트 수관 물 빼기(Flushing)가 세균 오염도 감소에 미치는 영향)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.659-665
    • /
    • 2015
  • A wide variety of methods have been used to control Dental Unit Waterline (DUWL) contamination. Among the methods, flushing is mainly used because it is simple and easy to use. Generally, flushing of DUWL for 20 or 30 sec before using high speed handpieces or scalers is recommended. However, the appropriateness of flushing time was not investigated thoroughly. The purpose of this study was to check the effective time of flushing for decreasing bacterial contamination. Seven dental unit chairs were randomly selected in student clinical simulation laboratory for this experiment. DUWLs were continuously flushed and water samples were collected at an interval of 30 seconds for 15 minutes. From five dental unit chairs, water samples were collected every 10 seconds for 1 minute. Bacterial levels in water samples were examined by the culture method on R2A plates. After 10 second flushing of DUWLs, the number of bacteria significantly reduced and decreased continuously up to 40 seconds. However, even after the water was flushed for 15 minutes, the bacterial contamination level was not reduced below recommended bacteria level, 200 CFU/ml. In addition to flushing, the periodic chemical disinfection is required to control the DUWL water to the recommended level.

Developing a Dental Unit Waterline Model Using General Laboratory Equipments (실험실 일반 장비를 이용한 치과용 유니트 수관 모델 개발)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.284-292
    • /
    • 2016
  • Water supplied through dental unit waterlines (DUWLs) has been shown to contain high number of bacteria. To reduce the contamination of DUWLs, it is essential to develop effective disinfectants. It is, however, difficulty to obtain proper DUWL samples for studies. The purpose of this study was to establish a simple laboratory model for reproducing DUWL biofilms. The bacteria obtained from DUWLs were cultured in R2A liquid medium for 10 days, and then stored at $-70^{\circ}C$. This stock was inoculated into R2A liquid medium and incubated in batch mode. After 5 days of culturing, it was inoculated into the biofilm formation model developed in this study. Our biofilm formation model comprised of a beaker containing R2A liquid medium and five glass rods attached to DUWL polyurethane tubing. Biofilm was allowed to form on the stir plate and the medium was replaced every 2 days. After 4 days of biofilm formation in the laboratory model, biofilm thickness, morphological characteristics and distribution of the composing bacteria were examined by confocal laser microscopy and scanning electron microscopy. The mean of biofilm accumulation was $4.68{\times}10^4$ colony forming unit/$cm^2$ and its thickness was $10{\sim}14{\mu}m$. In our laboratory model, thick bacterial lumps were observed in some parts of the tubing. To test the suitability of this biofilm model system, the effectiveness of disinfectants such as sodium hypochlorite, hydrogen peroxide, and chlorhexidine, was examined by their application to the biofilm formed in our model. Lower concentrations of disinfectants were less effective in reducing the count of bacteria constituting the biofilm. These results showed that our DUWL biofilm laboratory model was appropriate for comparison of disinfectant effects. Our laboratory model is expected to be useful for various other purposes in further studies.

Physiological and Ecological Characteristics of the Apple Snails (왕우렁이 (apple snails)의 생리.생태적 특성에 관한 연구)

  • Lee, Sang-Beom;Koh, Mun-Hwan;Na, Young-Eun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.50-56
    • /
    • 2002
  • This experiment was carried out to obtain some information about overwintering, physiological and ecological characteristics of apple snails. Another purpose of this experiment was to characterize an appetite for rice plants by apple snails and to elucidate their choice of fresh green ones (vegetables, some other crops, weeds in rice fields). The freshwater snails were found with higher population at sites abundant organic compounds such as plant debris and at regions with high temperature. They also prefer calcium-rich water. This is a naturally occurring process. Apple snails were exceptionally veil-adapted to the south regions of Korea, especially Janghang, Jangseong and Haenam, even if the temperature of winter season is cold below 0$^{\circ}C$. Apple snails were not very selective in their food choice and eat almost everything available in their environment. A snail have something called a radula in its mouth for grinding up its food. A apple snail also chews on fruits and young succulent plant barks. In case of reproduction. apple snails deposit about 157$\sim$784 (average of 321 eggs) milky white to pale orange colored eggs above the waterline. In approximately every 22.4 seconds a new egg appears. The total time needed to deposit a egg mass varies from 58 minutes$\sim$4 hours 13 minutes. Apple snails reproduct actively from May to June and from September to October. An appetite of apple snails for rice plants was the different depending on their size and glowing stage for rice plants. Apple snails had a great appetite of rice plants as well as dropwort, tomato, cabbage, radish, aquatic plants etc. They preferred to eat young rice plants and drastically quit eating rice plants of over 40 cm in height. Thus considering the food preference of apple snail for various plants including rice, they were thought to be a potentially strong predator in fields, especially, at regions with warmer winter.

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

A Study on a Drainage Facility of the Western Shore in Wolji Pond (월지(月池) 서측 호안의 출수시설(出水施設)에 관한 고찰)

  • Oh, Jun-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.72-87
    • /
    • 2018
  • This study highlights a drainage gate and a ditch, which existed around the whole area of the western shore of Wolji Pond(月池) and focuses on a possible connection between the drainage facility on the western shore and the historical drainage system of Wolji Pond. Specifically, it primarily considered locations and the form of a drainage gate, the relationship between northwestern ditch of Wolji Pond and the drainage gate, and the establishment period and the character of the drainage facility on the western shore. The drainage gate found in excavation in 1975 is determined as the same facility as Surakgu(水落口) recorded on an actual measurement drawing, 1922. Therefore, it is highly probable that there were already the drainage facility in the western shore of Wolji Pond before the 1920s. The drainage gate constructed by processing rectangular stones has four drainage holes for controlling water level. The way of the drainage through the drainage holes is the same as that of the northern shore of Wolji Pond. From a cadastral map drawn in 1913, it is found that the ditch existed in northwest of Wolji Pond. The ditch was proximate to the drainage gate and shared the same axes. Hence, the ditch and the drainage gate are determined as a organic facility connected to the drainage system of Wolji Pond. In particular, the ditch existed in northwest of Wolji Pond is the basis for judging that the drainage facility in the western shore were established before the 1910s. Water flowed in through drainage holes of the drainage gate is drained into the northwest of Wolji Pond, through the ditch. The establishment period and the intention of the drainage facility on the western shore can be interpreted in two aspects. First, they might be 'a agricultural irrigation facility in the Joseon era', given that Wolji Pond was recorded as a agricultural reservoir, and that the whole northwestern area of Wolji Pond was used as farm land areas. Second, they might be 'a drainage facility for controlling the water level in creating Wolji Pond', given that the drainage gate was annexed to the lower shore forming the waterline of Wolji Pond, and that the hight of drainage holes on top of the drainage gate was similar to the full water level of Wolji Pond. Considering the related grounds and circumstance, the latter possibility is high.