• Title/Summary/Keyword: water-solvent system

Search Result 325, Processing Time 0.029 seconds

Conformational Transition of Form II to Form Ⅰ PoLy(L-proline) and the Aggregation of Form Ⅰ in the Transition: Water-Propanol Solvent System

  • 김현돈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.922-928
    • /
    • 1997
  • The conformational transition of poly(L-proline) (PLP), Form Ⅱ → Form Ⅰ and the intermolecular aggregation of the product, Form Ⅰ, during and after the transition in water-propanol (1:7, 1:9, 1:15.7, and 1:29 v/v) were studied. For the study, the viscosity change and excess light scattering intensity were measured in the course of the transition which was determined by the Form Ⅰ fraction, fI of the sample solution. For the PLP sample of molecular weight Mv=31,000 the experimental results show that the reaction course is roughly divided into three regions: in the first region [fI=0.27 to 0.40 (- [α]D=400 to 330)], the conformational change of Form Ⅱ → Form Ⅰ occurs with decrease of viscosity, in the second region [fI=0.40 to 0.80 (- [α]D=330 to 120)], a partial side-by-side (p-S-S) type aggregation in which Form Ⅰ blocks interact with each other, which induces the increase of viscosity, starts to occur, and in the third region [fI=0.80 to 1.00 (- [α]D=120 to 15)], a side-by-side type (raft like) aggregation of Form Ⅰ or an end-to-end (E-E) type aggregation occurs according to the solvent situation, i.e., in a water-rich medium [water-propanol (1:9 or 1:7 v/v)], the (S-S) type aggregation with a gross decrease in viscosity occurs while in a water-poor medium [water-propanol (1:29 or 1:15.7 v/v), the (E-E) type aggregation with a large increase in viscosity occurs. The (S-S) type aggregation was promoted at high temperatures. Based on the structure of PLP, a reasonable mechanism for the (p-S-S) and (S-S) aggregation which occurs with the transition of Form Ⅱ → Form Ⅰ is considered. The suggested mechanism was also supported by the result of chain length effect of PLP for the aggregation.

Studies on Solvent Sublation of Trace Heavy Metals by Continuous Flow System as Ternary Complexes of 1,10-Phenanthroline and Thiocyanate Ion

  • Kim, Young-Sang;Choi, Yoon-Seok;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1775-1780
    • /
    • 2003
  • A continuous flow system has been developed to determine trace Cu(II), Mn(II), Ni(II) and Zn(II) in a large volume of water samples by a solvent sublation technique. The mixed solution of 1,10-phenanthroline(phen) and thiocyanate ion was used as ligands for the formation of their ternary complexes. The continuous system was constructed in this laboratory with a peristaltic pump, a mini shaker, three mixing bottles and a flotation cell by connecting each part with a polyethylene tube. The flotation conditions such as the flow rate of sample solution and the injection rates of ligand, buffer and surfactant solutions have been investigated to obtain the best sublation efficiencies. Each solution flowed into the flotation cell through each polyethylene tube by the peristaltic pumps. The ternary complexes were floated and extracted into MIBK in a flotation cell of 2 L by bubbling a nitrogen gas. The absorbances of extracted analytes in MIBK were directly measured by graphite furnace-AAS. The concentrations of 1,10-phenanthroline and thiocyanate ion were $2.6\;{\times}\;10^{-3}$ M and $2.3\;{\times}\;10^{-2}$ M in the mixed solution, respectively. The pH of sample solution was adjusted to 5.0 with a buffer solution and 1%(m/v) sodium lauryl sulphate solution was added as a surfactant to support the effective flotation of the complexes. The $N_2$ gas was bubbled at 30 mL/min for 90 minutes for 20 L of sample. Reproducible results of less than 10% RSD and recoveries of 80-120% could be obtained in real samples.

Phase Behavior of Simvastatin Drug in Mixtures of Dimethyl Ether and Supercritical Carbon Dioxide (디메틸에베르와 초임계이산화탄소의 혼합물에서 Simvastatin 약물의 상거동)

  • Shin, Eun-Kyoung;Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dimethyl ether (DME) and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing DME as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of DME and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the DME composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature.

  • PDF

Comparison of Biological Activities of Extracts from Different Parts and Solvent Fractions in Cornus kousa Buerg (산딸나무의 부위별 추출물 및 용매 분획물의 생리활성 비교)

  • Kim, Young-Jung;Jeong, Jin-A;Kwon, Su-Hyun;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Several extracts of different parts and solvent fractions of Cornus kousa were obtained and their functional material contents, antioxidant activities and tyrosinase inhibition effects were determined. Content of total polyphenols and flavonoids contents in flower were 169.638 $mg{\cdot}g^{-1}$ and 25.418 $mg{\cdot}g^{-1}$, respectively, which were much higher than those of other parts. Also, flower extracts showed the strongest effects on DPPH and ABTS radicals scavenging and ferrous ion chelating. In flower, leaf, and stem extracts, inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate(FTC) method were higher than a synthetic antioxidant, BHT. Tyrosinase inhibition activities were shown only in flower extract. Flower and leaf extracts, showing high biological activities in various system, were successively reextracted with n-hexane, chloroform, ethylacetate and n-butanol. Total polyphenol contents of water fractions were higher than any other solvent fractions in both flower and leaf, 67.006 $mg{\cdot}g^{-1}$ and 67.739 $mg{\cdot}g^{-1}$, respectively. But total flavonoid contents were higher in ethyl acetate fraction for flower extract and butanol fraction for leaf extract. Among the solvent fractions, the highest efficiency of free radical scavenging activities was obtained in ethyl acetate fraction for flower extract and n-butanol fraction for leaf extract. Tyrosinase inhibition activities were higher in water fraction for both flower and leaf extracts, 49.24% and 31.8%, respectively.

Solid Dispersion as a Strategy to Improve Drug Bioavailability (고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략)

  • Park, Jun-Hyung;Chun, Myung-Kwan;Cho, Hoon;Choi, Hoo-Kyun
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

A Study on the Component Analysis of Sappan Wood Extracts (소목 추출물의 구조분석)

  • 이상락;김인회;남성우
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.229-239
    • /
    • 2002
  • Colorants were extracted from the heartwood of sappan lin. with MeOH under reflux, and the concentrate or the powder of dye was prepared by low pressure concentration method using suitable organic solvent. Various components were isolated from sappan wood, and the chemical structure and mechanism of compound having the excellent antibacterial and deodorization properties were analyzed. The results obtained are as follows ; The seventeen components of sappan wood were seperated by HPLC chromatography, and the five components among them were existed more than 6% and the other components were existed lower than 0.6%. The resolving powers of the non-polar solvent and polar solvent systems were evaluated by their ability to resolve the samples. It showed that chloroform-methanol-water(800:150:10) system has the best resolving power. Although the seperation rate is very slow, polyamide C-100 column chromatography gives a clear seperation of sappan wood. On the basis of the spectrometric data such as IR, UV, $GC-Mass,\;^1H-NMR,\;^{13}C-NMR\;and\;^1H-^{ 13}C-NMR$, the chemical structure of compound haying the excellent antibacterial and deodorization properties was established as brazilin containing the functional groups such as two quaternary carbon, one benzyl carbon, methylene contiguous to oxygen and methylene caused by oxygen atom.

The study of phase inversion of polymer solutions using small angle light scattering (SALS): The effect of addition of alcohol (C1-C4) on phase separation behavior and hydraulic permeation (SALS를 이용한 고분자용액의 상전환 기구에 관한 연구 : C1-C4 알콜의 첨가에 따른 상분리 거동에 미치는 효과와 투과 특성)

  • Kang, Jong-Seok;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.81-85
    • /
    • 2002
  • Small angle light scattering and field emission scanning electron microscope have been used to quantify the kinetics of liquid-liquid separation behavior during water vapor(RH52%[$\pm$3%] at 27$^{\circ}C$) quenching (non-solvent induced phase separation, NIPS) of polysulfone/NMP/Alcohol and CPVC/THF/Alcohol, respectively. Time dependence of the position of the light scattering maximum was observed at polysufone dope solutions, confirming spinodal secomposition (SD). while CPVC dope solutions showed a decreased scattered light intensity with a increased q-valuel, indicating nucleation & growth (NG). For the each system, domain growth rate in the intermediate and late stage of phase separation decreased with increasing the number of carbon of alcohol used as additive (non-solvent). Also, in the early stage for SD, the scattering intensity with time was in accordance with Cahns linear theory of spinodal decomposition,[1-3] regardless of types of non-solvent additive.

  • PDF

Evaluation of the Efficiency of Solvent Systems to Remove Acetic Acid Derived from Pre-pulping Extraction

  • Park, Seong-Jik;Moon, Joon-Kwan;Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.447-455
    • /
    • 2013
  • Hemicellulose extract obtained by pre-pulping extraction of woodchips, is very diluted acidic in nature. The major component responsible for this weak acidity is acetic acid, present in levels up to 5~10 g/L. Here, we report an exploratory study on the extract upgrading by reactive solvent extraction of acetic acid as well as ASPEN simulation. In this study, liquid-liquid equilibria for the ternary systems (water + acetic acid + ethyl acetate) were measured at the temperature of 298.15 K and 10 (pH = 2.02), 5 (pH = 2.17), and 1 (pH = 2.48) percent of acetic acid samples were used to carry out liquid-liquid extraction studies using ethyl acetate. In a one-stage batch experiment, 96.0% of acetic acid could be extracted for the solvent when the ratio of organic-to-aqueous phases is 4:1. For simulation results, they were used to estimate the interaction parameters between each of the three compounds of the systems studied for the NRTL and UNIQUAC models. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models.

Determination of Aconitine and Related Alkaloids in Processed Buza (부자류 생약의 성분인 아코니틴과 관련 알칼로이드의 정량)

  • 엄동옥;한상욱;신현덕
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.135-140
    • /
    • 2000
  • Determination of Aconitum alkaloids in processed Buza (Cho-0, Salted Buza, Moist-heating Buza, Limed Buza), which had been prepared from the raw tubers of Aconitum chiisanenseb(Ranunculaceae), was established using visible spectrophotometry and high-performance liquid chromatography (HPLC) method especially for Aconitine analysis. Aconitum alkloids were reacted with tetra- thiocy-anatocobalt[II] complex ion to form a stable ion pair. The reaction product was insoluble in water but freely soluble in several organic solvents. 1.2-Dichloroethane was the best extracting solvent among the examined solvents. Spectrophotometry of Aconitum alkaloids at nax. 625 was carried out. The HPLC method for aconitine was carried out using Radial PAK-CN column with gradient solvent system by solvent mixture of acetonitrile and phosphate buffer (pH 3.0) at 4$0^{\circ}C$ and 254 nm. Linear relationship was found between absorbance response and concentration of aconitine in range of 0.45 mM~0.9 mM ($r^2$=0.9949) by spectrophotometry and 0.3 mM~1.2mM($r^2$=0.9983) by HPLC method. These methods have been found to be suitable and reproducible for routine analysis of Aconitum alkaloids and its pharmaceutical preparations.

  • PDF

Antioxidant Effects on various solvent extracts from Onion Peel and Onion Flesh (양파껍질과 양파육질의 용매추출물에 따른 항산화 효과)

  • Jo, Jeong-Sun;Bang, Hyeon-A
    • Journal of the Korean Dietetic Association
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 1998
  • This study was designed to investigate the role of onion as a natural antioxidant. Onion was distinguished as yellow onion peel and onion flesh. Onion samples were extracted with 5 different kinds of solvents such as water, 70% ethanol, 99.9%ethanol, 99.9% methanol, and 96% butanol in order to select optimal extraction solvents, In this part of study linoleic acid was used s an model system for the purpose of determining the antioxidant activities. The optimal extraction rate of various solvents containing onion samples was determined by measuring extraction yield, electron donating ability(EDA), thiobarbituric acid(TBA), and thiocyanate, which are common methods for measuring activity. As a result 70% ethanol was shown as the most effective solvent.

  • PDF