• 제목/요약/키워드: water-soluble polymer

검색결과 265건 처리시간 0.023초

Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan

  • Park, Yoon-Kyung;Kim, Mi-Hyun;Park, Seong-Cheol;Cheong, Hyeon-Sook;Jang, Mi-Kyeong;Nah, Jae-Woon;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권10호
    • /
    • pp.1729-1734
    • /
    • 2008
  • Chitosan, a cationic polysaccharide, has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. The antifungal activity and mechanism of action of low molecular weight water-soluble chitosan (LMWS-chitosan) were studied in fungal cells and vesicles containing various compositions of fungal lipids. LMWS-chitosan showed strong antifungal activity against various pathogenic yeasts and hyphae-forming fungi but no hemolytic activity or cytotoxicity against mammalian cells. The degree of calcein leakage was assessed on the basis of lipid composition (PC/CH; 10:1, w/w). Our result showing that LMWS-chitosan interacts with liposomes demonstrated that chitosan induces leakage from zwitterionic lipid vesicles. Confocal microscopy revealed that LMWS-chitosan was located in the plasma membrane. Finally, scanning electron microscopy revealed that LMWS-chitosan causes significant morphological changes on fungal surfaces. Its potent antibiotic activity suggests that LMWS-chitosan is an excellent candidate as a lead compound for the development of novel anti-infective agents.

Absorption Behavior in the Body of Chitosan Oligosaccharide according to Molecular Weight; An In vitro and In vivo Study

  • Jang, Mi-Kyeong;Kang, Seong-Koo;Nah, Jae-Woon
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.937-941
    • /
    • 2006
  • Chitosan has a wide range of applications in biomedical materials as well as in dietary supplements. Chitosan oligosaccharide with free-amine group (COFa) is an improvement over traditional chitosan that lacks the usual impurities and materials detrimental to the body. Based on a previous study of water soluble chitosan (WSC, chitosan lactate), we investigated the molecular weight (Mw) - dependent absorption phenomena of COFa in vitro and in vivo with various Mws. The absorption of CO Fa was significantly influenced by its molecular weight. As Mw increases, the absorption decreases. The absorption profiles for 5 K COFa (Mw=5 kDa) were observed to be more than 10 times higher than those of high molecular weight chitosan (100 K HWSC Mw=100 kDa) in both in vitro and in vivo transport experiments. Furthermore, the in vitro transport experiment suggested that transcellular transport of the COFa (Mw <10 kDa) through Caco-2 cell layer could occur with a negligible cytotoxic effect. The COFas showed a cytotoxic effect on Caco-2 cells that was dependent on dose and Mw. COFa could be transported transcellularly through the Caco-2 cell layer.

Immunomodulating Activity of the Exopolymer from Submerged Mycelial Culture of Phellinus pini

  • Jeong, Sang-Chul;Cho, Sung-Pill;Yang, Byung-Keun;Jeong, Yong-Tae;Ra, Kyung-Soo;Song, Chi-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2004
  • The immunomodulating activities and chemical characteristics of a water-soluble exopolymer from submerged mycelial culture of Phellinus pini were studied. Anticomplementary activity of this polymer was found to be $73.2\%$, and its activation system occurred through both classical and alternative pathways, where the classical pathway was detected to be the major one by crossed immunoelectrophoresis. Nitric oxide (NO) release ability and acid phosphatase activity of macrophage were increased by 1.6-fold ($100{\mu}g/ml$) and 3.4-fold ($500{\mu}g/ml$), respectively, and splenocyte proliferation in mixed lymphocyte reaction (MLR) was also increased by 2.6-fold ($200{\mu}g/ml$), compared to the control. The molecular weight of this polymer, determined by HPLC, was under 5 kDa. Total sugar and protein contents were 89.7 and 10.3%, respectively. Both sugar and amino acid compositions of the exopolymer were also analyzed.

비닐 아세테이트/알킬메타크릴레이트계 공중합과 등온건조속도 (Isothermal Drying Rate and Copolymerization of Vinyl Acetate/Alkyl Methacrylates)

  • 김민성;설수덕
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.230-236
    • /
    • 2009
  • 비닐 아세테이트/알킬메타크릴레이트계 에멀젼 공중합에서 반응온도, 개시제의 종류와 농도, 보호콜로이드인 PVA의 종류와 농도, 공단량체인 MMA, EMA의 조성비를 변화시키며 중합하였다. 제조된 공중합체인 poly(vinyl acetate-co-methyl methacrylate)(PVAc/PMMA), poly(vinyl acetate-co-ethyl methacrylate)(PVAc/PEMA)를 수분 측정기를 사용하여 100, 130, 150, 180, $200^{\circ}C$에서 등온건조 시키고, 그 건조 특성을 고찰하여 다음과 같은 결론을 얻었다. 등온법으로 얻은 중합체 고형화 과정의 활성화 에너지는 PVAc/PMMA> PVAc/PEMA> PVAc의 순으로 공단량체의 곁사슬의 탄소수 증가에 따라 감소하였다. 접착박리강도는 동일한 조성의 공중합체에서 보호콜로이드 함량에 비례하여 증가하였고, 내수 접착박리강도는 최적의 보호콜로이드 함량에서 공단량체의 종류와 함량에 따라 PVAc/PMMA>PVAc/PEMA>PVAc 순이다.

Natural Rubber-polyacrylamide Graft 공중합체의 합성 (Synthesis of Natural Rubber-g-polyacrylamide Polymer)

  • Son, Cha Hoo;Kim, Kyung Hwan;Park, Tchun Wook
    • 한국염색가공학회지
    • /
    • 제7권4호
    • /
    • pp.45-53
    • /
    • 1995
  • Natural rubber(NR)-polyacrylamide(PAAm) graft copolymers(GP)(toluene soluble GP : TSGP, water dispersible GP : WDGP) have been synthesized as coupling agents by pre-emulsification methods based on "inverse emulsion graft polymerization" technique. The polymerization was carried out at $65^{\circ}C$ using Azobisisobytyro nitrile(AIBN) as an initiator in the inverse emulsion system formed by inxing NR toluene solution with inverse emulsion of awueous AAm solution emulsified with $Tween^{\#}$ 80 in toluene. The mechanism of inverse emulsion graft copolymerization was studied on AAm conversion, % grafting, grafting efficiency, NR conversion, production ratio of TSGP and amount of GP(sum of TSGP and WDGP). The reaction has been confirmed through use of optical microscope to proceed via adsorption of emulsifier colloid particles onto the stretched NR molecule. From the analysis of the effects of various polymerization conditions on the grafting, it has also been found that the present rection system can easily yield high(over 90%) grafting efficiency and AAm conversion and relatively high(over 80%) NR conversion.onversion.

  • PDF

전도성 고분자를 전극으로 한 유기 전기발광 소자의 제작 및 특성 (Fabrication and Characteristics of Organic EL Devices using Conducting Polymer as an Electrode)

  • 이광연;김영관;권오관;손병청;김옥병
    • 한국응용과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.323-327
    • /
    • 1999
  • A water-soluble conducting polymer (CPP400 Paste) containing a derivative of polythiophene with several dopant was investigated as an anode material for organic electroluminescent devices. The device of ITO/CPP 400 Paste/TPD/$Alq_3$/Li:Al was fabricated, where CPP 400 Paste films were prepared by spin coating and TPD and $Alq_3$, films were prepared by vacuum evaporation. It was found that the turn-on voltage, current density, and luminance of the devices were dependent upon the thickness of CPP 400 Paste film in the Electroluminescent and current-voltage characteristics of the devices. This phenomena were explained by the energy level diagram of the device with the energy levels of the CPP400 Paste obtained by cyclic voltammetric method.

친환경 콘크리트 개발을 위한 고분자 화합물의 적용에 관한 연구 (A Study on Application of High Molecular Compound for Development of Eco-friendly Concrete)

  • 류재석;이용수;송일현
    • 대한토목학회논문집
    • /
    • 제32권5A호
    • /
    • pp.299-305
    • /
    • 2012
  • 본 연구는 수용성 폴리머의 일종인 폴리비닐아세테이트(Polyvinyl Acetate, 이하 PVAc)를 사용한 폴리머 시멘트 모르타르와 콘크리트의 특성에 관한 평가를 통하여 친환경 콘크리트 개발을 위한 기초자료를 획득하는 것이다. 이를 위해 PVAc를 혼입하지 않은 시멘트 모르타르 및 콘크리트와 결합재 대비 3%, 6%, 9%, 12%의 PVAc를 각각 혼입한 폴리머 시멘트 모르타르 및 콘크리트와의 비교분석을 통한 물리적 특성을 평가하였으며, 폴리머 혼입에 따라 늘어나는 공기량을 제어하기 위해 소포제를 첨가하여 PVAc 콘크리트의 특성을 평가하였다. 그 결과 PVAc가 혼입된 폴리머 시멘트 모르타르의 경우 압축강도는 낮아지나 휨강도와 건조수축의 성능이 향상되는 것으로 나타났으며, 콘크리트의 경우 혼입율이 6%일 때가 압축강도, 인장강도, 휨강도 및 탄성계수가 높아지는 것을 확인할 수 있었다.

폴리에틸렌 옥사이드가 암포테리신-B의 응집 특성 및 독성에 미치는 영향 (The Effect of Polyethylene Oxide on the Aggregation State and Toxicity of Amphotericin B)

  • 유봉규
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.7-12
    • /
    • 2001
  • Amphotericin B (AmB) is a drug of choice for the treatment of systemic fungal diseases, but its use is considerably limited due to a high incidence of toxicity, particularly nephrotoxicity. It has been demonstrated that the toxicity of AmB is caused by self-aggregated species of the drug and that unaggregated (monomeric) drug is nontoxic but still expresses antifungal activity. Poly (ethylene oxide) (PEO) is a water-soluble polymer, which may impact the aggregation state of AmB. We have studied the aggregation state of AmB as a function of PEO molecular weight and concentration. At 3,000 and 8,000 g/mole, there was minimal or no change of critical aggregation concentration (CAC) of AmB regardless of the concentration of polymer. By contrast at 20,000 g/mole, the CAC of AmB strikingly increased to 24.3 and $37.5\;{\mu}M$ at 5.0% and 10 % w/v of polymer, respectively. The critical overlap concentration (COC) of PEO 20,000 g/mole was 5.5%. It appears that an interaction between monomeric AmB and polymer coil increases above the COC, competing with self-aggregation of the drug. Accordingly, the degree of aggregation of AmB stayed low and the toxicity became less. There was no such effect at 3,000 and 8,000 g/mole of PEO, owing perhaps to small dimensions in comparison to AmB. Based upon these findings, less toxic AmB formulation may be developed by a pharmaceutical technique such as solid dispersion system containing both AmB and PEO 20,000 g/mole.

  • PDF

중합체 매개 용융압출에 의한 참당귀 나노복합체의 제조 (Fabrication of Nano-composites from the Radix of Angelica gigas Nakai by Hot Melt Extrusion Mediated Polymer Matrixs)

  • ;조현종;임정대;박철호;강위수
    • 한국약용작물학회지
    • /
    • 제26권5호
    • /
    • pp.417-429
    • /
    • 2018
  • Background: The objective of this study was to make colloidal dispersions of the active compounds of radix of Angelica gigas Nakai that could be charaterized as nano-composites using hot melt extrusion (HME). Food grade hydrophilic polymer matrices were used to disperse these compound in aqueous media. Methods and Results: Extrudate solid formulations (ESFs) mediated by various HPMCs (hydroxypropyl methylcelluloses) and Na-Alg polymers made from ultrafine powder of the radix of Angelica gigas Nakai were developed through a physical crosslink method (HME) using an ionization agent (treatment with acetic acid) and different food grade polymers [HPMCs, such as HP55, CN40H, AN6 and sodium alignate (Na-Alg)]. X-ray powder diffraction (XRD) analysis confirmed the amorphization of crystal compounds in the HP55-mediated extrudate solid formulation (HP55-ESF). Differential scanning calorimetry (DSC) analysis indicated a lower enthalpy (${\Delta}H=10.62J/g$) of glass transition temperature (Tg) in the HP55-ESF than in the other formulations. Infrared fourier transform spectroscopy (FT-IR) revealed that new functional groups were produced in the HP55-ESF. The content of phenolic compounds, flavonoid (including decursin and decursinol angelate) content, and antioxidant activity increased by 5, 10, and 2 times in the HP55-ESF, respectively. The production of water soluble (61.5%) nano-sized (323 nm) particles was achieved in the HP55-ESF. Conclusions: Nano-composites were developed herein utilizing melt-extruded solid dispersion technology, including food grade polymer enhanced nano dispersion (< 500 nm) of active compounds from the radix of Angelica gigas Nakai with enhanced solubility and bioavailability. These nano-composites of the radix of Angelica gigas Nakai can be developed and marketed as products with high therapeutic performance.

생체의료용 재료로써 키틴·키토산의 특성 (Characterization of Chitin and Chitosan as a Biomedical Polymer)

  • 장미경;나재운
    • 공업화학
    • /
    • 제19권5호
    • /
    • pp.457-465
    • /
    • 2008
  • 인간의 질병을 치료하기 위한 여러 가지 의료 시스템의 개발이 생명공학의 발전과 함께 많은 연구가 이루어지고 있다. 또한 약물이나 유전자와 같은 생리활성물질을 체내에 안전하게 전달할 수 있는 시스템의 개발과 함께 이루어지고 있다. 이러한 시스템에 있어서 가장 중요한 것은 생체적합성 및 생체분해성 그리고 무독성의 특성을 가진 생체의료용 고분자를 개발하는 것이다. 천연고분자물질인 키토산은 좋은 생체적합성과 생체활성의 특성을 가지고 있어서 생체의료용 재료로 심도 있게 고려되어지고 있다. 키토산의 물성은 키틴의 결정성 구조에 따라 다르게 설명되므로 키틴의 구조적 분석에 대한 연구가 생체재료로써의 응용을 위해서 선행되어야 한다. 이러한 관점에서 본 총설에서는 키틴의 결정성 구조 분석, 키토산의 일반적인 물성 그리고 생체의료용 재료로써 저분자량 수용성 키토산의 가능성을 소개하였다. 또한 다양한 기능성기를 이용한 저분자량 수용성 키토산의 화학적인 개질을 약물전달체로써의 가능성을 강조하고 생체이용율의 향상을 위해 수행하였다.