• Title/Summary/Keyword: water thermal energy

Search Result 1,287, Processing Time 0.025 seconds

Thermal Energy Recovery from Waste Heat of an I.C. Engine for Agriculture(II) -System Simulation and Stability Test- (농용(農用) 내연기관(內燃機關) 폐열(廢熱)의 열(熱)에너지 회수(回收)(II) -시스템 Simulation과 안정성(安定性) 실험(實驗)-)

  • Suh, S.R.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.6-13
    • /
    • 1987
  • A mathematical model for the waste heat recovery system for an engine was developed. The model based on the experimental data reported before was validated and was used to predict the waste heat recovery and recoverable heat of the engine at various operating conditions of the engine and the system. The model was also used to determine flow rates of the circulating water in the system for a certain temperature increment of the water at various operating conditions of the engine to give basic data to design the system. Stability of the system performance was tested on subjects of vapor lock problem, thermal characteristics of the thermostatic valve, and temperature variation of the circulating water in the engine and fuel consumption of the engine during each mode of the system operation and its change into the other. The test showed that the system operation was stable enough. Temperature profile in the thermal energy storage (TES) was observed during storing thermal energy, and thermal stratification in the TES was well formed acceptable to be used in the system. Finally a scheme to automatize the system was suggested.

  • PDF

Ice-slurry Generation of Ice Thermal Energy Storage System using Ultrasonic Vibration (초음파 진동을 이용한 빙축열 시스템의 아이스 슬러리 생성 연구)

  • Byon, Sung-Kwang;Gong, Chun-Su;Kim, Nam Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.578-584
    • /
    • 2013
  • Ice slurry that is a mixture of fine ice crystals and liquid water is a widely used working fluid in the ice thermal energy storage system due to its flowability and large latent heat of fusion. Generally ice slurry is made from supercooled water. But the excessive supercooling causes the water to freeze even worse to block the pipe. Additionally large degree of supercooling of water degrades the efficiency of the ice thermal energy storage system. Therefore the effective method to control the phase change from supercooled water to ice slurry is needed. In this paper we experimentally studied a novel method to generate the ice slurry from the supercooled water using the ultrasonic vibration. It was found that the cavitation impact of supercooled water by ultrasonic vibration can help the generation of ice slurry.

Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구)

  • Joo, Hong-Jin;Jeon, Yong-Han;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

Characteristics of Solar Desalination System Using Refrigerant-123 As a Heating Source (R123 열원 적용 증발식 담수 시스템 특성 연구)

  • Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • The evaporative desalination system using solar thermal energy would be the efficient and attractive method to get fresh water from brine due to low carbon dioxide generation. In this research the solar desalination system as a heating source of refrigerant R123 in the evaporator was considered. The circulation of refrigerant in the evaporator can reduce the energy consumption of the system, because of using the latent heat of the refrigerant 123 instead of the sensible heat of present hot water. The system was comprised of the single-stage fresh water production unit on the capacity of 1ton/day with shell and tube type evaporator, heaters instead of solar collector to supply the proper heat to refrigerant, and refrigerant and brine circulation systems. Various operating flowrate and temperature ranges were varied in the experiments to get the optimum design data. The results showed that the optimum flow rate of brine feed rate to evaporator was 1.2Liter/min, and the yield of fresh water was increased as higher temperature of feed brine. It was confirmed that the circulation flowrate of heating source of refrigerant was decrease of one fifth of the present warm water system, and very efficient system for solar desalination.

Study on Stratification according to Diffuser Shape of the Thermal Storage Tank in Integrated Energy (집단에너지 공급 축열조의 디퓨져 형태별 성층화 연구)

  • Jang, Cheol-Yong;Cho, Soo;Choi, Seok-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.300-303
    • /
    • 2008
  • The stratification effect was investigated with four different types of diffuser shape in a thermal storage tank. For this study, experimental facility was constructed, which was composed of experimental thermal storage tank, hot and cold water storage tanks, boiler, chiller, data acquisition system, etc.. Visualization and lab scale experimental result showed that radial curved type diffuser was the highest degree of stratification among the four diffuser shapes.

  • PDF

Characteristics of Carbon Nano Fluid Added PVP (PVP가 첨가된 탄소나노유체의 특성에 대한 연구)

  • Seo, Hyang-Min;Park, Sung-Seek;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.289-295
    • /
    • 2010
  • In this study, the enhancement of the thermal conductivity of water in the presence of multi-walled carbon nanotubes, MWCNT, was investigated. Sodium Dodecyl Sulfate, SDS, and Polyvinylpyrrolidone, PVP, were employed as the dispersant. SDS or PVP was added in pure water. And then, MWCNT of 0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, and 0.02 vol% was dispersed respectively. The thermal conductivity and the viscosity were measured with a transient hot-wire instrument built for this study and the DV II+ Pro viscometer. The results showed that PVP had good thermal conductivity at 300 wt% and this was better than that of SDS 100 wt%, also, the viscosity of nano fluid added PVP rapidly increased until 0.02 vol%.

Numerical Analysis on the Thermal Design of a Heat Exchanger for a Cold & Hot Water Mattress Equipped with Thermoelectric Modules (열전소자가 적용된 냉·온수 매트용 전열 모듈의 기초 열설계에 관한 수치해석적 연구)

  • Yang, Ho-Dong;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.113-121
    • /
    • 2021
  • In this study, the thermal characteristics of cold and hot water mattress units equipped with thermoelectric modules were investigated via numerical analyses. Cold and hot water mattress products that are currently in existence use manual methods requiring refrigerants to be added to the hot water boiler. However, the cold and hot water mattress units using thermoelectric modules can provide improved efficiency via energy savings and actively resolving environmental pollution problems. To determine the efficiency of the thermoelectric module, the mattress was modeled and its efficiency was analyzed for the cooling and heating processes using two 100-W-class and one 200-W-class thermoelectric modules, respectively. From the results of this study, it was confirmed that when two 100-W-class modules were used, the application area was larger than when a single 200-W-class module was used, with uniform temperature distribution and improved performance compared to existing products in terms of electrical energy.

FEFLOW를 이용한 천부지열 활용 예측 모델링

  • 심병완;송윤호;김형찬
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.399-402
    • /
    • 2004
  • An aquifer thermal energy storage (ATES) model is simulated by FEFLOW according to the scenario of heat pump operation in two layered confining aquifer. The scenario is consisted of 4 steps: 90 days pumping (west well) and waste water injection (east well: 35 $^{\circ}C$), 90 day s stop, 90days pumping (east well) and waste water injection (west well: 5 $^{\circ}C$), and 95 days stop. The injection of the waste water is limited in the second layer and the first layer is aquitard. The temperature distribution at the surface shows low difference with reference temperature and opposit aspect with that of the second layer because the thermal transition through the first layer is very slow. Even though the simulated thermal transition in the aquifer system have a difference with real ATES system, optimal design and operate system can be developed with field tests and operational experience.

  • PDF

A Study on the Heat Exchange Performance for the Liquid Based Solar Thermal Storage (Liquid Based Solar Thermal Storage를 위한 열교환성능(熱交換性能)에 관한 연구(硏究))

  • Kim, Byung-Chul;Jung, Hyun-Chai
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.35-45
    • /
    • 1985
  • A solar hot water storage tank was designed and constructed to examine the heat exchange performances on load side for the solar thermal storage in a single loop solar water heating system. In the tank helically coiled tube was immersed. The hot water was circulated from either top or bottom. The circulation flow rate was varied from 500 ml/min to 20,000 ml/min. The effect of flow rate was observed. The thermal performances according to the flow rate and flow direction were examined. The temperature distributions in the tank and inside of the tubes were plotted along the process of cooling.

  • PDF