DOI QR코드

DOI QR Code

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu (Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University) ;
  • Jimin Xu (Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University) ;
  • Tianwang Lai (Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University) ;
  • Maogang He (Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University)
  • Received : 2021.07.13
  • Accepted : 2023.06.13
  • Published : 2023.09.25

Abstract

In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

Keywords

Acknowledgement

The supports which are provide by the National Natural Science Foundation of China (No. 41941018, No.51936009 and No. 51721004) for the completion of this work are gratefully acknowledged.

References

  1. Abchouyeh, M.A., Mohebbi, R. and Fard, O.S. (2018), "Lattice boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle", Int. J. Mod. Phys. C., 29(9). https://doi.org/10.1142/S0129183118500791.
  2. Abedini, A., Armaghani, T. and Chamkha, A. J. (2019), "MHD free convection heat transfer of a water-Fe3O4 nanofluid in a baffled C-shaped enclosure", J. Therm. Anal. Calorim., 135(1), 685-695. https://doi.org/10.1007/s10973-018-7225-8.
  3. Babar, H. and Ali, H.M. (2019), "Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges", J. Mol. Liq., 281, 598-633. https://doi.org/10.1016/j.molliq.2019.02.102.
  4. Beriache, M., Sidik, N.A.C., Yazid, M.N.A.W.M., Mamat, R., Najafi, G. and Kefayati, G.H.R. (2016), "A review on why researchers apply external magnetic field on nanofluids", Int. Commun. Heat Mass Transf., 78, 60-67. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.023.
  5. Boujelbene, M., Rehman, S., Alqahtani, S., Alshehery, S. and Eldin, S.M. (2023), "Thermal transport and magnetohydrodynamics flow of generalized Newtonian nanofluid with inherent irreversibility between conduit with slip at the walls", Eng. Appl. Comp. Fluid, 17(1), 2182364. https://doi.org/10.1080/19942060.2023.2182364.
  6. Bouselsal, M., Mebarek-Oudina, F., Biswas, N. and Ismail, A.I. (2023), "Heat transfer enhancement using Al2O3-MWCNT hybrid-nanofluid inside a tube/shell heat exchanger with different tube shapes", Micromachines, 14, 1072. https://doi.org/10.3390/mi14051072.
  7. Brinkman, H.C. (1952), "The viscosity of concentrated suspensions and solutions", J. Chem. Phys., 20(4), 571. https://doi.org/10.1063/1.1700493.
  8. Cardellini, A., Fasano, M., Bozorg Bigdeli, M., Chiavazzo, E. and Asinari, P. (2016), "Thermal transport phenomena in nanoparticle suspensions", J. Phys. Condens. Matter., 28(48). https://doi.org/10.1088/0953-8984/28/48/483003.
  9. Chabani, I., Mebarek-Oudina, F., Vaidya, H. and Ismail, A.I. (2022), "Numerical analysis of magnetic hybrid Nano-fluid natural convective flow in an adjusted porous trapezoidal enclosure", J. Magn. Magn. Mater., 564, 170142. https://doi.org/10.1016/j.jmmm.2022.170142.
  10. Dai, W.S., Zand, Y., Agdas, A.S., Selmi, A., Roco-Videla, A., Wakil, K. and Issakhov, A. (2021), "The economic and management use of rhododendron petals in potas-sium-ion nano batteries anode via efficient computer simulation", Adv. Nano Res., 10(6), 503-515. https://doi.org/10.12989/anr.2021.10.6.503.
  11. Darbari, B., Rashidi, S. and Keshmiri, A. (2020), "Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators", J. Therm. Anal. Calorim., 140(3), 1045-1055. https://doi.org/10.1007/s10973-019-08382-7.
  12. Dong, B., Zhou, X., Zhang, Y., Chen, C. and Li, W. (2018), "Numerical simulation of thermal flow of power-law fluids using lattice boltzmann method on non-orthogonal grids", Int. J. Heat Mass Transf., 126, 293-305. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.003.
  13. Ergun, S. (1952), "Fluid flow through packed columns", Chem. Eng. Prog., 48.
  14. Farooq, U., Akhtar, K., Abbasi, M.M., Hussain, M. and Aldandani, M.(2023), "Convective heat transfer performance of MHD nanofluid flow with temperature dependent viscosity over stretching surface", Z Angew Math Mech., 1-13. https://doi.org/10.1002/zamm.202300053.
  15. Guo, Z. and Zhao, T.S. (2002), "Lattice boltzmann model for incompressible flows through porous media", Phys. Rev. E, 66(3), 1-9. https://doi.org/10.1103/PhysRevE.66.036304.
  16. Guo, Z. and Zheng, C. (2008), "Analysis of lattice boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the knudsen layer", Int. J. Comut. Fluid Dyn., 22(7), 465-473. https://doi.org/10.1080/10618560802253100.
  17. Guo, Z.L., Zheng C.G., (2008), Theory and Applications of Lattice Boltzmann Method, Science Press, Beijing, China.
  18. Habibzadeh, S., Kazemi-Beydokhti, A., Khodadadi, A. A., Mortazavi, Y., Omanovic, S. and Shariat-Niassar, M. (2010), "Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route", Chem. Eng. J., 156(2), 471-478. https://doi.org/10.1016/j.cej.2009.11.007.
  19. Hamilton, R. L. (1962), "Thermal conductivity of heterogeneous two-component systems", Ind. Eng. Chem. Fundam., 1(3), 187-191. https://doi.org/10.1021/i160003a005.
  20. He, Y.L., Wang Y., Li Q. (2008), Lattice Boltzmann Method: Theory and Applications, Science Press, Beijing, China.
  21. Iqbal, W., Jalil, M., Qazaq, A., Khadimallah, M.A., Naeem, M.N., Hussain, M., Mahmoud, S.R., Ghandourah, E. and Tounsi, A. (2021), "Effect of suction on flow of dusty fluid along exponentially stretching cylinder", Adv. Nano Res., 10(3), 263-270. https://doi.org/10.12989/anr.2021.10.3.263.
  22. Izadi, M., Hoghoughi, G., Mohebbi, R. and Sheremet, M. (2018), "Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model", J. Mol. Liq., 261, 357-372. https://doi.org/10.1016/j.molliq.2018.04.063.
  23. Kadhim, H.T., Dulaimi, Z.M.A. and Rona, A. (2023), "Local thermal non-equilibrium analysis of Cu-Al2O3 hybrid nanofluid natural convection in a partially layered porous enclosure with wavy walls", J. Appl. Comput. Mech., 9(3), 712-727. https://doi.org/10.22055/jacm.2022.42046.3863.
  24. Kang, X., Liao, Q., Zhu, X. and Yang, Y. (2010), "Non-equilibrium extrapolation method in the lattice boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM)", Appl. Therm. Eng., 30(13), 1790-1796. https://doi.org/10.1016/j.applthermaleng.2010.03.032.
  25. Khan, M.I., Khan, W.A., Waqas, M., Kadry, S., Chu, Y.M. and Ali, Z. (2020), "Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip", Appl. Nanosci., 10, 5469-5477. https://doi.org/10.1007/s13204-020-01517-5.
  26. Khan, U., Mebarek-Oudina, F., Zaib, A., Ishak, A., Bakar, S.A., Sherif, E.S.M. and Baleanu, D. (2022), "An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces", Wave Random Complex, 1-14. https://doi.org/10.1080/17455030.2022.2102689.
  27. Li, Z., Sheikholeslami, M., Mittal, A. S., Shafee, A. and Haq, R. (2019), "Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice boltzmann method", Eur. Phys. J. Plus., 134(1). https://doi.org/10.1140/epjp/i2019-12406-8.
  28. Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M. (2020), "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence", Phys. A, 550, 124028. https://doi.org/10.1016/j.physa.2019.124028.
  29. Manna, N.K., Mondal, M.K. and Biswas, N. (2021), "A novel multi-banding application of magnetic field to convective transport system filled with porous medium and hybrid nanofluid", Phys. Scr. 96. https://doi.org/10.1088/1402-4896/abecbf.
  30. Mebarek-Oudina, F. (2018), "Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source", Heat Transf. Asian Res., 1-13. https://doi.org/10.1002/htj.21375.
  31. Mebarek-Oudina, F., Chabani, I. (2022), "Review on nano-fluids applications and heat transfer enhancement techniques in different enclosures", J. Nanofluids, 11, 155-168. https://doi.org/10.1166/jon.2022.1834.
  32. Mebarek-Oudina, F., Preeti, Sabu, A.S., Vaidya, H., Lewis, R.W., Areekara, S., Mathew, A. and Ismail A.I. (2023), "Hydromagnetic flow of magnetite-water nanofluid utilizing adapted Buongiorno model", Int. J. Mod. Phys. B, 2450003. https://doi.org/10.1142/S0217979224500036.
  33. Mohamad, A.A. (2015), Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Publishing House of Electronics Industry, Beijing, China.
  34. Mondal, S., Dey, A. and Pal, U. (2016), "Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study", Adv. Nano Res., 4(4), 295-307. https://doi.org/10.12989/anr.2016.4.4.295.
  35. Murali Krishna, V. and Sandeep Kumar, M. (2019), "Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment", Mater. Today Proc., 17, 295-302. https://doi.org/10.1016/j.matpr.2019.06.433.
  36. Nfawa, S.R., Abu Talib, A.R., Basri, A.A. and Masuri, S.U. (2021), "Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/Water nanofluid", Case Stud. Therm. Eng., 27(6), 101279. https://doi.org/10.1016/j.csite.2021.101279.
  37. Patel, H.E., Das, S.K., Sundararajan, T., Sreekumaran Nair, A., George, B. and Pradeep, T. (2003), "Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects", Appl. Phys. Lett., 83(14), 2931-2933. https://doi.org/10.1063/1.1602578.
  38. Ramesh, K., Mebarek-Oudina, F., Ismail, A.I., Jaiswal, B.R., Warke, A.S., Lodhi, R.K. and Sharma, T. (2023), "Computational analysis of radiative non-Newtonian Carreau nanofluid flow in a microchannel under the magnetic properties", Sci. Iran. B., 30(2), 376-390. https://doi.org/10.24200/sci.2022.58629.5822.
  39. Rao, S. and Deka, P.N. (2023), "A study on MHD flow of SWCNT-Al2O3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions", Numer. Heat Transf. A, 1-21. https://doi.org/10.1080/10407782.2023.2207731.
  40. Raza, J., Mebarek-Oudina, F. and Lund, L.A. (2022), "The flow of magnetised convective Casson liquid via a porous channel with shrinking and stationary walls", Pramana J. Phys., 96(4), 1-10. https://doi.org/10.1007/s12043-022-02465-1.
  41. Sajjadi, H., Amiri Delouei, A., Izadi, M. and Mohebbi, R. (2018), "Investigation of MHD natural convection in a porous media by double MRT lattice boltzmann method utilizing MWCNT-Fe3O4/water hybrid nanofluid", Int. J. Heat Mass Transf., 132, 1087-1104. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.060.
  42. Salehi, A., Abbassi, A. and Nazari, M. (2014), "Numerical solution of fluid flow and conjugate heat transfer in a channel filled with fibrous porous media - a lattice boltzmann method approach", J. Porous Media., 17(12), 1075-1091. https://doi.org/10.1615/JPorMedia.v17.i12.50.
  43. Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021), "Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model", Adv. Nano Res., 10(3), 221-234. https://doi.org/10.12989/anr.2021.10.3.221.
  44. Shafiq, A., Mebarek-Oudina, F., Sindhu, T.N. and Rasool, G. (2022), "Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM", Sci. Iran. B, 29 (3), 1236-1249. https://doi.org/10.24200/sci.2021.58293.5662.
  45. Sheikholeslami, M. and Ganji, D.D. (2016), "Nanofluid convective heat transfer using semi analytical and numerical approaches: a review", J. Taiwan Inst. Chem. Eng., 65, 43-77. https://doi.org/10.1016/j.jtice.2016.05.014.
  46. Sheikholeslami, M., Gorji-Bandpy, M. and Ganji, D.D. (2014), "MHD free convection in an eccentric semi-annulus filled with nanofluid", J. Taiwan Inst. Chem. Eng., 45(4), 1204-1216. http://dx.doi.org/10.1016/j.jtice.2014.03.010.
  47. Sheikholeslami, M., Keramati, H., Shafee, A., Li, Z., Alawad, O.A. and Tlili, I. (2019), "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice boltzmann method", Phys. A, 523, 87-104, https://doi.org/10.1016/j.physa.2019.02.014.
  48. Singh, S.P., Verma, A.K., Jaiswal, A.K., Singh, D. and Yadav, R.R. (2021), "Study of ultrasonic and thermal properties for heat transfer enhancement in Fe2O3 nanoparticles-ethylene glycol nanofluids", Int. J. Thermophys., 42(4), 1-17. https://doi.org/10.1007/s10765-021-02809-w.
  49. Yan, Y.Y. and Zu, Y.Q. (2008), "Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - a LBM approach", Int. J. Heat Mass Transf., 51(9-10), 2519-2536. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.053.
  50. Yu, W. and Choi, S.U.S. (2004), "The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model", J. Nanopart. Res., 6(4), 355-361. https://doi.org/10.1007/s11051-004-2601-7.
  51. Yusoff, A.H.M., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., 6(1), 1-19. https://doi.org/10.12989/anr.2018.6.1.001.