• Title/Summary/Keyword: water temperature sensor

Search Result 292, Processing Time 0.031 seconds

Development of experimental water level measuring device using an Arduino and an ultrasonic sensor (아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • Water levels are measured in various fields such as sewage treatment plants, water treatment plants, rivers, dams, factory storages' tanks. Ultrasonic instruments for water level measurement are expensive and are used for industrial field. Rapid advances in electronics have made it possible to build a wide variety of measurement, monitoring and control functions at low cost. This study was started to make ultrasonic level measurement system at low price. The system was constructed with an Arduino, an ultrasonic sensor and a temperature sensor for use in the experiment. The ultrasonic sensor measures the time from the sensor to the liquid surface. The temperature sensor measures the atmospheric temperature and improves the accuracy of the ultrasonic distance measurement by correcting the sound speed. Arduino controls measurements and calculates the water level. All components of the system are assembled into a device holder. Experiments with this system show that the water level measured by the system is very close to the actual value. This system is also inexpensive and easy to install and maintain, making it suitable for laboratory use.

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF

A simulation on the energy saving based on different temperature tracing method and weather condition in electrical power plant (화력발전소 배관시스템의 운전 및 기후조건에 따른 에너지절감에 관한 시뮬레이션)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • Most of steam power plants in Korea are using the method of heating the feed water whenever the ambient temperature around the power plant area below $5^{\circ}C$ to prevent freezing water flowing in the pipe in winter time. But this kind of heat supplying system is not useful to save energy. If we take the method that the temperature of the each pipe is controled by direct measure of temperature by attaching sensor on the outside surface of the feed water tubes, then we can expect that a plenty of energy can be saved. In this study, the computer simulation is used to compare the energy consumption loads of both systems. Energy saving rate is calculated for the location of Incheon area in winter season. Four convection heat transfer coefficients for the ambient air and three initial flowing water temperature inside the tube were used. The result shows that the temperature control system using sensor represents more than 95% of energy saving rate in Incheon area. Even in the severe January weather condition, the energy saving rate is almost 75% in two days basis and even 83% in one day basis.

Multiplexed fabry-perot interferometric sensor system (다중화 Fabry-Perot 간섭형 광섬유 센서 시스템)

  • 나도성;예윤해;이동영;박광순
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.273-278
    • /
    • 1999
  • A TDM-multiplexed fiber optic pressure/temperature sensor system utilizing fiber optic Fabry-Perot interferometers as sensing devices was developed and applied to measure water level variations and temperature variations. The maximum measurement speed of the system without saving measurement data is 4500 times per second and the response time of the sensors is thought to be ~ms. The difference between the theoretical value and the measured value for the scale factor of water level sensor and temperature sensor was +13.7%, -18% respectively. The nonlinearity of the sensors after calibration was less than 1%. The sensor system was applied to verify the capability of measuring the temperature variations and water level variations at a high speed.

  • PDF

In Line Plastic-Optical-Fiber Temperature Sensor

  • Seo, Hyejin;Shin, Jong-Dug;Park, Jaehee
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.238-242
    • /
    • 2021
  • In this paper, we present an in line plastic-optical-fiber (POF) temperature sensor based on intensity modulation. The in line POF temperature sensor is composed of a POF, including an in-fiber micro hole filled with reversible thermochromic material, the transmittance of which depends on temperature. The reversible thermochromic material was cobalt chloride/polyvinyl butyral gel. A cobalt chloride solution of concentration 30.8 mM was formulated using 10% water/90% ethanol (v/v) solution, and gelled by dissolving polyvinyl butyral in this solution. Four types of in line POF sensors, with in line micro holes of four different diameters, were fabricated to measure temperature in the range of 25 to 75 ℃. The output optical power of all of these in line POF temperature sensors was inversely proportional to the temperature; the relation between output power and temperature was approximately linear, and the sensitivity was proportional to the diameter of the in-fiber micro hole. The experimental results indicate that an in line POF sensor can be used effectively for measuring moderate temperatures.

Design and Implementation the Control System of Automatic Spry Based on Sensor Network Environment (센서네트워크 환경 기반의 자동 분무기 제어시스템의설계 및 구현)

  • Kwak, Yoon-Sik;Goo, Boon-Kun;Cheong, Seung-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, we design and implement a automatic control system of wireless sensor network based sprayer for hog barns. The proposed control system is driven by events from sensor nodes. It gathers various sensor readings such as temperature, humid, water level and water temperature, and controls the sprayer in real time by analyzing the sensor readings. Through experiments, we show that the proposed control system manages temperature and humidity steadily. Our proposed system enhances the existing system about 33% for temperature management and 37.3% for humidity management.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

A Study on the Implementation of Intelligent Diagnosis System for Motor Pump (모터펌프의 지능형 진단시스템 구현에 관한 연구)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

Design and Implementation of IoT-Based Intelligent Platform for Water Level Monitoring (IoT 기반 지능형 수위 모니터링 플랫폼 설계 및 구현)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • The main objective of this study was to assess the applicability of IoT (Internet of Things)-based flood management under climate change by developing intelligent water level monitoring platform based on IoT. In this study, Arduino Uno was selected as the development board, which is an open-source electronic platform. Arduino Uno was designed to connect the ultrasonic sensor, temperature sensor, and data logger shield for implementing IoT. Arduino IDE (Integrated Development Environment) was selected as the Arduino software and used to develop the intelligent algorithm to measure and calibrate the real-time water level automatically. The intelligent water level monitoring platform consists of water level measurement, temperature calibration, data calibration, stage-discharge relationship, and data logger algorithms. Water level measurement and temperature calibration algorithm corrected the bias inherent in the ultrasonic sensor. Data calibration algorithm analyzed and corrected the outliers during the measurement process. The verification of the intelligent water level measurement algorithm was performed by comparing water levels using the tape and ultrasonic sensor, which was generated by measuring water levels at regular intervals up to the maximum level. The statistics of the slope of the regression line and $R^2$ were 1.00 and 0.99, respectively which were considered acceptable. The error was 0.0575 cm. The verification of data calibration algorithm was performed by analyzing water levels containing all error codes in a time series graph. The intelligent platform developed in this study may contribute to the public IoT service, which is applicable to intelligent flood management under climate change.