• Title/Summary/Keyword: water system

Search Result 18,304, Processing Time 0.044 seconds

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

A Study on the Flow rate Analysis of a Sanitary Fixture for Water Supply Piping System (급수배관방식에 따른 욕실 위생기구의 유량분석에 관한 연구)

  • JANG, Y.K.;KIM, D.J.;SUH, B.T.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.9-14
    • /
    • 2011
  • The flow rate analysis for sanitary fixtures has been studied to determine the water supply piping system and size. The study has been carried out to analyze for a various water supply pressure and piping size theoretically. Also, the study has been carried out to analyze for a various water supply piping system experimentally. The water supply pressure is varied from 0.01MPa to 0.07MPa, and the piping size is varied from 6mm to 15mm. The water supply piping systems are one-to-one, all-loop-type, and bathroom-loop-type water supply piping system. The results indicate that the piping size is able to supply water fully in case of smaller than 15mm if the water supply pressure keep an necessary minimum pressure. And the gap of flow rate is very little for the various water supply piping systems.

An Experimental Study on the Solar Hot Water Heating System for the Dormitory of University (기숙사 태양열 급탕시스템의 열성능에 관한 실증연구)

  • Shin, U-Cheul;Baek, Nam-Choon;Kwak, Hee-Yeul;Ju, Hyunlo-Lo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • The Purpose of this work is to investigate a long-term thermal performance of active solar hot water heating system for the dormitory of university. For this, monitering system including temperature sensors, flow-meters was installed in this system. Measurement was continued for 13 months between April 1st 2004 and May 31th 2005. As results, hot water demand, daily and monthly hot water load distribution which are necessary for the solar system design were suggested. Also thermal stratification in solar buffer tank was observed in the point of increasement of system efficiency. The yearly solar fraction and system efficiency of this system are about 29.5% and 44.9% respectively.

An Application of GIS to Water Quality Management (GIS를 이용한 하천수질관리)

  • Yang, Hyung-Jae;Lee, Yoo-Won;Kim, Min
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.25-32
    • /
    • 1994
  • This study was carried out as the Anyang creek water quality management using Geographic Information System (GIS) is the purpose of this pilot project to apply a GIS to environmental management field. Analysis of water quality data has been investigated using GIS with modeling of water quality management for the Anyang creek. The results of this study are summarized as follows: 1. The concentration of Mercury in sediment was increased rapidly nearby A26(Nightsoil Treatment Plant) and maximum was showed at A18 (Imgok bridge). Cadmium was increased rapidly at A35(Chulsan bridge). 2. River water quality management using visible computer system as GIS is effective to make decision for water quality management plan and database of environmental factors should be completed before applying GIS. 3. When water pollution accident is occurred in the river water system, pollutant source can be traced and analysed systematically using GIS to manage pollutants discharged into the river water system.

  • PDF

An Experimental Study on the characteristic of Exhaust Emissions and the Engine Performacne with Intake Port Water Injection in Diesel Engine (흡기 포트 내 물 분사에 의한 디젤 기관의 배기 유해물 배출 및 기관 성능 변화에 관한 실험적연구)

  • 김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • This study was carried out to reduce NOx emissions from diesel engine and to investigate the variation of engine performance using the water injection. In this study the water was extracted from the exhaust gas and injected directly into the intake port with the inlet charge. The water condensing system operated as a closed system without any supplementary water supply. The experimental parameters such as the revolution the torque and the water injection rate are varied and the result from this experiment found the significant NOx reduction whereas the smoke emission increases as water/air ratio increases as the cases like the EGR. In spite of increasing the quantity of the water injection the engine output was slightly decreased and the specific fuel consumption was increased as was anticipated. Especially the system was founded to be effective on the reduction of the NOx emissions at the high load region relatively.

  • PDF

A Study on the Development and Improvement of Simple Piped Water Supply System in Rural Area of Korea (농촌지역 간이상수도시설 개발 및 개선에 관한 연구)

  • Chung, Yong;Koo, Ja-Kon;Kim, Myung-Ho;Yun, Suk-Woo;Kim, In-Sook
    • Journal of agricultural medicine and community health
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 1988
  • It is very important to supply safe drinking water for rural area not only a prevention of entric diseases but also a promotion of health life. It is estimated that 6,981,000 rural inhabitants were covered by the simple piped water supply system at the end of 1987 in Korea. The programme for improvement of water supply system in rural villages was initiated by the government since 1967. But most of these systems have been operated carelessly by the hands of villagers who have no proper knowledge and experience. Since most of water sources were located nearby farmland, there might be a possibility that the sources could be contaminated by pesticides and fertilizers. For this reason, it is recommended to take underground water as a water source rather than surface water such as a pond or streamwater in rural areas. However, the system is supplied from the surface water, its water quality can be improved by using of simple sand filter and simple chlorinator inexpensively. On the basis of an on-site study, conducted during 1986-87, in San-Buk Village, Keum-Sa-Myon, Yeju-Gun, Kyong-Gi-Do, the new simple piped water supply system was designed by the Institute for Environmental Research, Yonsei University, and constructed by the villagers themselves in September 1987. This simple system which is protected by metal fences consists of three main parts, pump house, vertical sand filter and water tank. The pumped water from underground flows into the upper part of the sand filter, through the sand, and out the water tank which is connected to the bottom of vertical filter. And the simple plastic-bottle chlorinator was installed in the water tank for chlorination. The water quality was remarkably improved after completion of construction. The total bacterial count was not detected from the tap water in households distributed by this simple piped water supply system. The construction cost of this system which was connected 34 households in San-Buk Village, was 4,851,000 won (approximately 6,020 U.S. dollars : 1$=805.8 won) in 1987,77% of expenses was supported by the Community Development Foundation in Korea. This case study for simple piped water supply projects will be applicable to other programme for improvement of water supply system in rural areas of Korea, and other developing countries.

  • PDF

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.

Development of Management System for a Drainage Basin using Spatial Information (공간정보를 이용한 유역 관리시스템 개발)

  • Shin, Sha-Chul;Kim, Seong-Joon;Chae, Hyo-Sok;Kwon, Gi-Ryang;Lee, Yun-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • The water resources information system of a watershed should be set up to understand the water management problems with reflecting basin characteristics for the effective water use. This study is to develop a watershed management system to be operated in water resources and water quality management. In order to promote effective utilization of this system, the various kinds of information data are collected, and this system could be utilized as a valuable tool for maximum uses of them. The information system developed in this study is constructed with GUI(graphic user interface) system using Arc-View and Visual Basic at the circumstances based on the PC. The integrated GIS and Remote Sensing based system is directed to the need for more detailed information on watershed management. The ability to present system clearly provides an indispensable tool for a river basin development and water management plan.

  • PDF

Forecasting the Long-term Water Demand Using System Dynamics in Seoul (시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측)

  • Kim, Shin-Geol;Pyon, Sin-Suk;Kim, Young-Sang;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • Forecasting the long-term water demand is important in the plan of water supply system because the location and capacity of water facilities are decided according to it. To forecast the long-term water demand, the existing method based on lpcd and population has been usually used. But, these days the trend among the variation of water demand has been disappeared, so expressing other variation of it is needed to forecast correct water demand. To accomplish it, we introduced the System Dynamics method to consider total connections of water demand factor. Firstly, the factors connected with water demand were divided into three sectors(water demand, industry, and population sectors), and the connections of factors were set with multiple regression model. And it was compared to existing method. The results are as followings. The correlation efficients are 0.330 in existing model and 0.960 in SD model and MAE are 3.96% in existing model and 1.68% in SD model. So, it is proved that SD model is superior to the existing model. To forecast the long-term water demand, scenarios were made with variations of employment condition, economic condition and consumer price indexes and forecasted water demands in 2012. After all scenarios were performed, the results showed that it was not needed to increase the water supply ability in Seoul.

Status of Water Infrastructure and Future Tasks in Jeollabuk-do Province(Focussed on the Mangyeong River and Dongjin River) (전라북도 물이용 체계 및 과제(만경강과 동진강 중심으로))

  • Kim, Boguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2022
  • Mangyeong River and Dongjin River are highly dependent on external regions for domestic and agricultural water, and the agricultural water supply and use system of those rivers are very complicated. For smooth water supply, rivers are used as a supply system. Of the total river water use permits (as of 2019), agricultural water accounts for 97.5%, 80.4% in Mangyeong River and Dongjin River, respectively. The excessive intake of river water as agricultural purpose is causing the stream to dry out and to deteriorate the ecological health of the river. It is necessary to minimize the water use system that takes in and utilizes river water. In both rivers, the flow rate of agricultural drainage and the load of major water quality items that flowing into the main stream are similar to or higher than those of the major tributaries, indicating that management is necessary to improve the water quality of the river. It is necessary to understand the effect of agricultural drainage on river water quality by establishing a continuous monitoring system for the form of agricultural drainage.