• Title/Summary/Keyword: water supply plant

Search Result 359, Processing Time 0.032 seconds

FMEA for Facility Reliability Analysis of A Hydro-power Plant (수력발전소 설비 신뢰성 분석을 위한 FMEA)

  • Kwon, Chang-Seob;Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.135-144
    • /
    • 2006
  • The significance of hydro-power plant is increasing in its public roles such as flood control and water supply as well as electric power production. Even if high level of reliability in facility operation is required, no specific reliability research has been made. This specifically stems from the lack of technology and research investments. The eventual goal of this study is to secure a methodology for reliability analysis of hydro-power plant so that an appropriate decision for operation and investment can be made. Specific effort was put to develop a reliability model for water supply system within hydro-power plant. For this study, we briefly examined the overview of the hydro-power plant including the electric power generation facility system. We then discussed the facility reliability analysis methodology for hydro-power plant. Based on rigorous examination of the water supply system and components roles, we drew major failure modes for each component and examined their effects.

  • PDF

FTA Modeling of Water Supply System for Hydro-power Plant (수력발전소 물 공급 설비에 대한 FTA 모형)

  • Jeon, Tae-Bo;Kwon, Chang-Seob
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.145-155
    • /
    • 2006
  • High level of reliability in facility operation is specifically required these days. The goal of this study is to secure a methodology for reliability analysis of hydro-power plant so that an appropriate decision for operation and investment can be made. Fault tree analysis of water supply system within hydro-power plant has been performed in this study. We briefly examined the electric power generation facility and water supply system. We then developed fault tree for the water supply system based on failure modes and effects analysis. We conclude this study and provided future research areas.

  • PDF

Determination of the Optimal Location for Water Treatment Plants in the Decentralized Water Supply System (분산형 용수공급시스템 구축을 위한 정수처리시설 최적 위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kim, Jeong-Hyun;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Major issues in water supply service have changed from expansion of service area to improvement of service quality, i.e., water quality and safety, and early response to emergency situation. This change in the service concept triggers the perceptions of limitation with the current centralized water supply system and of necessities of decentralized (distributed) water supply system (DWSS), which can make up the limitations. DWSS can reduce the possibility of water supply outage by establishing multiple barriers such as emergency water supply system, and secure better water quality by locating treatment facilities neighboring consumers. On the other hand, fluctuation of water demand will be increased due to the reduced supply area, which makes difficult to promptly respond the fluctuating demand. In order to supplement this, hybrid water supply system was proposed, which combined DWSS with conventional water supply system using distributing reservoir to secure the stability of water supply. The Optimal connection point of DWSS to existing water supply network in urban area was determined by simulating a supply network using EPANET. Optimal location of decentralized water treatment plant (or connection point) is a nodal point where changes in pressure at other nodal points can be minimized. At the same time, the optimal point should be selected to minimize hydraulic retention time in supply network (water age) to secure proper water quality. In order to locate the point where these two criteria are satisfied optimally, Distance measure method, one of multi-criteria decision making was employed to integrate the two results having different dimensions. This methodology can be used as an efficient decision-support criterion for the location of treatment plant in decentralized water supply system.

Strategy for efficient operation on the backwash waste treatment in membrane filtration water treatment plant (막여과 정수장 배출수처리시설의 효율적인 운영방안)

  • Jung, Wonchae;Yu, Youngbeom;Lee, Sunju;Moon, Yongtaik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.479-489
    • /
    • 2014
  • Membrane backwashing waste shows seasonally different characteristics and it has bad settleability differently from general backwashing waste in water treatment plant. When chemicals was injected to membrane backwashing waste, the settleability was better than chemicals was not injected. However, when settled lower sludge was not discharged, flowing sludge continuously was concentrated over a certain surface and floatation penomena occurred according to flowing velocity. When the lower sludge was discharged continuously in the thickener to prevent floatation penomena of turbidity materials, the depth of sludge surface was the least and the settleability increased.

Prospect and strategies of seawater desalination plant in Asia major countries (아시아 주요국의 해수담수화 플랜트 시장전망과 진출방안)

  • Sohn, Jin-Sik;Han, Ji-Hee;Kim, Suk-Hwa;Sheen, Dong-Woo;Lim, Jae-Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • Seawater desalination has vest interest in terms of ultimate water resources for the countries suffering lack of water supply. Water demand is steadily increasing due to the population growth and industrialization in Asia. The objectives of this study are to prospect the desalination market in Asia countries including China, India and Singapore, and to propose possible strategies of getting through Asia water market. Water supply in China is increasing up to $5,322,060m^3$/d in 2015. Northeast coastal areas such as Tianjin, Shandong, Hubei, and Liaoning are expected rapid increase for water demand. The investment of water supply in India would be 1.74 billion dollars during 2006 to 2015. Chennai, Kutch, and Pondicherry have possibility in introducing seawater desalination plants. Singapore is focusing on water reuse, and operating three NEWater plants (water reuse plants). BOT with total solution providing financing, construction, operation etc. is an adequate strategy to getting through China water market, while desalination plant project connecting with power plant is desirable in India. The cooperative system with Korea and Singapore creates synergy effect regarding planning and operating experience of Singapore and EPC ability of Korea.

A Simulated Annealing Model for Long Range Water Supply Planning (장기 용수 공급계획 수립을 위한 컴퓨터 모의뜨임 모형)

  • 김승권;이준열
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.2
    • /
    • pp.77-93
    • /
    • 1995
  • A mathematical model for long-rage water supply planning was formulated as a dynamic plant location problem with network arc capacity expansion, and illustative example was presented. The proposed solution procedure identifies economical construction timings of surface water supply facilities and water conveyence systems and the best water supply operating patterns as well. In this study, we present a heuristic solution procedure using Simulated annealing Method in conjunction with Bertsekas & Tseng's RELAXT-II for the 0-1 integer network problem.

  • PDF

A Study on Feasibility Analysis and Optimum Range Calculation Model by Conversion of Water Supply System (상수도 급수방식 전환의 타당성 분석 및 최적 범위 산정모델 연구)

  • Park, Junyeol;Shin, Hwisu;Seo, Jeewon;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • This study concerned the analysis on the efficiency of the conversion of water tank type supply system to direct water supply system to examine the feasibility of the conversion, as well as the calculation of optimal conversion range that enables the supply of safe, high-quality water at stable pressure in accordance with the standards of water supply facility. The results of this research showed that when converting water supply system from water tank type supply system to direct water supply system, more nodal points could be properly converted and more reduction of electricity usage was expected in case water pressure rather than residence time was fixed. This means that higher efficacy can be obtained by fixing water pressure when converting water supply system. However, since the number of the locations that received on-spot inspection was small and the electricity usage measured was not exclusively by water supply facility, it is difficult to judge that such reduction of electricity usage accurately represents reduced electricity usage by water supply facility alone. therefore, after having secured on-spot information about a larger number of locations in apartment complexes that have converted water supply system, and utilizing information about electricity usage exclusively by water supply facility, the proposed method of this research could be applied to accurately deducing expected reduction of electricity usage by water supply facilities of various other apartment complexes. It is also considered possible to deduce an effective operation method of water supply system by finding out an area that shows low pressure or low residual chlorine concentration in the optimal conversion range of water supply, followed by estimating the proper location of pumping station or the proper chlorine dosage at the power purification plant that supply water to the target area.

Development of an Optimal Operation Model of Residual Chlorine Concentration in Water Supply System (송·배수시스템의 최적 잔류염소농도 관리 모델 개발)

  • Kim, Kibum;Hyung, Jinseok;Seo, Jeewon;Shin, Hwisu;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.587-597
    • /
    • 2017
  • This study aimed to develop a method to optimize residual chlorine concentrations in the process of providing water supply. To this end, this study developed a model capable of optimizing the chlorine input into the clearwell in the purification plant and the optimal installation location of rechlorination facilities, and chlorine input. This study applied genetic algorithms finding the optimal point with appropriate residual chlorine concentrations and deriving a cost-optimal solution. The developed model was applied to SN purification plant supply area. As a result, it was possible to meet the target residual chlorine concentration with the minimum cost. Also, the optimal operation method in target area according to the water temperature and volume of supply was suggested. On the basis of the results, this study derived the most economical operational method of coping with water pollution in the process of providing water supply and satisfying the service level required by consumers in the aspects of cost effectiveness. It is considered possible to appropriately respond to increasing service level required by consumers in the future and to use the study results to establish an operational management plan in a short-term perspective.

A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration (과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안)

  • Ra, Beyong-pil;Kim, Jin-min;Lee, Dong-keun;Park, Jong-ho;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

Mineral Components of Water Supply Plants and Spring Waters in Northern Gyeonggi Area (경기북부지역 정수장 및 약수터의 미네랄 성분 분포 연구)

  • Song, Hee-Il;Lim, Han-Su;Park, Gyoung-Su;Park, Hyun-Goo;Lee, Hyun-Jin;Jo, Mi-Hyun;Kim, Young-Yeon;Oh, Jo-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.238-246
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the distribution of mineral components, health and taste index for water supply plants, spring water located in northern Gyeonggi area and bottled waters in market to analyze Ca, K, Mg Na, Si, $F^-$ and $SO_4{^{2-}}$. Method: The samples were source and tap water in 15 water supply plants over 9 river basin, 172 spring water and 20 bottled water. The Ca, K, Mg Na and Si were analyzed by ICP-OES. The $F^-$ and $SO_4{^{2-}}$ were determined by Ion Chromatograph. Then, taste and health index were calculated using Hashimoto equation. Results: The average concentration of major minerals showed in same order of Ca > Na > Mg > K for all kinds of drinking water from water supply plants, spring waters and bottled waters. Total concentration of major minerals (Ca, K, Mg, Na) was calculated that showed 26.79 mg/L of tap water, 21.81 mg/L of spring water, 32.94 mg/L of bottled water on average. So, the spring waters indicated the lowest minerals sum. The tap water from water supply plants was categorized to Group I, II for 33.3, 44.4% according to K-index and O-index. Otherwise, spring water was classified as Group I, II for 44.0, 46.3%. Conclusion: According to the results of K and O-index, water from water supply plant showed higher K-index which means good for the health. Otherwise, spring water indicated higher O-index that people can feel more delicious than tap water. Futhermore, the mineral distribution of source water from water supply plants and spring water had indicated high correlation with geological effect.