• Title/Summary/Keyword: water soluble solid

검색결과 289건 처리시간 0.022초

Solid State Fermentation Reactor를 이용한 유기성 폐기물의 발효 (Composting of Organic Wastes by solid State Fermentation Reactor)

  • 홍운표;이신영
    • 한국미생물·생명공학회지
    • /
    • 제27권4호
    • /
    • pp.311-319
    • /
    • 1999
  • Leaves of Aloe vera Linne and bloods of domestic animal were composted in a soild state fermentation reactor (SSFR) by using microbial additive including a bulking and moisture controlling agent. From solid-culture of microbial additive, 10 species of bacteria and 10 species of fungi were isolated and, their enzyme activities including amylase, carboxy methyl cellulase CMCase, lipase and protease were detected. Optimum fermentation conditions of Aloe leaves and domestic animal bloods in SSFR were obtained from the studies of response surface analysis employing microbial additive content, initial moisture content, and fermentation temperature as the independent variables. The optimum conditions for SSFR using Aloe leaves were obtained at 9.45$\pm$73%(w/w) of microbial additives, 62.73$\pm$4.54%(w/w) of initial moisture content and 55.32$\pm$3.14$^{\circ}C$ of fermentation temperature while those for SSFR using domestic animal bloods were obtained at 10.25$\pm$2.04%, 58.68$\pm$4.97% and 57.85$\pm$5.$65^{\circ}C$, respectively. Composting process in SSFR was initially proceeded through fermentation and solid materials were decomposed within 24 hours by maintaining higher moisture level, and maturing and drying steps are followed later. After the fermentation step, the concentrations of solid phase inorganic components were increased while that of organic components were decreased. Also, concentrations of total organic carbon(TOC), peptides, amino acids, polysaccharides, and low fatty acids in water extracts were increased. As fermentation in composting process depends on initial C/N ratios in water extracts of two samples were increased because of increased water-soluble TOC. From these results, it was revealed that solid state fermentation reactor using microbial additives can be used in composting process of organic wastes with broad C/N ratio.

  • PDF

Sulfonylurea계(系) 제초제(除草劑)의 화학적(化學的) 안정성(安定性) (Chemical Stabilization Study for Sulfonylurea Herbicides)

  • Chen, Chia-Chung
    • 한국잡초학회지
    • /
    • 제17권2호
    • /
    • pp.135-138
    • /
    • 1997
  • Sulfonylureas are highly active herbicides which can be applied at very low rate(10-50g/ha) to control broadleaf weeds. The nature of this category of compound is, however, very unstable toward hydrolysis. Therefore, the preparation of these compounds as liquid formulation was not possible. Most of the current formulations of sulfonylurea are in dry forms such as water dispersible granule or wettable powder. Even in these dry forms, the active ingredients also encounter significant chemical decomposition. This study involves the preparation of the sulfonylurea salts by reacting the parent compound with base such as sodium hydroxide. The salt becomes stable toward hydrolysis and it turns soluble when diluted with water. This discovery makes the preparation for liquid formulation or soluble granule of sulfonylurea possible. The stoichiometry of base added to the neutral sulfonylurea is controlled quite precisely. The base has to be added enough to quench the acidic impurities in the technical material and to convert the active ingredient into salt. However, the base should not be overused to cause further saponification of the sulfonylurea salts. The chemical nature of these compounds is presented and the chemical reaction is described. New soluble liquid formulation and solid granule formulation of sulfonylurea are suggested.

  • PDF

Spherical Granule Production from Micronized Saltwort (Salicornia herbacea) Powder as Salt Substitute

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2013
  • The whole saltwort plant (Salicornia herbacea) was micronized to develop the table salt substitute. The micronized powder was mixed with distilled water and made into a spherical granule by using the fluid-bed coater (SGMPDW). The SGMPDW had superior flowability to powder; however, it had low dispersibility. To increase the dispersibility of SGMPDW, the micronized powder was mixed with the solution, which contained various soluble solid contents of saltwort aqueous extract (SAE), and made into a spherical granule (SGMPSAE). The SGMPSAE prepared with the higher percentages of solid content of SAE showed improved dispersibility in water and an increase in salty taste. The SGMPSAE prepared with 10% SAE was shown to possess the best physicochemical properties and its relative saltiness compared to NaCl (0.39). In conclusion, SGMPSAEs can be used as a table salt substitute and a functional food material with enhanced absorptivity and convenience.

Preparation and Characterization of Solid Dispersion of Ipriflavone with Polyvinylpyrrolidone

  • Jeong, Je-Kyo;Kim, Jung-Hoon;Khang, Gil-Son;Rhee, John M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권3호
    • /
    • pp.173-179
    • /
    • 2002
  • Solid dispersions of ipriflavone with PVP were prepared by a spray-drying method in order to improve the bioavailability. They were measured with scanning electron microscopy, differential scanning calorimetry, x-ray powder diffraction, and Fourier transform infrared spectroscopy to evaluate the physicochemical interaction between ipriflavone and PVP and study the correlation between these physicochemical characteristics and bioavailability. Ipriflavone exhibited crystallinity, whereas PVP was almost amorphous. The area of the endotherm $({\Delta}H)$ of freezer milled ipriflavone, freezer milled ipriflavone physically mixed with freezer milled PVP, and physically mixed ipriflavone with PVP was almost the same, whereas ${\Delta}H$ of the solid dispersed ipriflavone with PVP was much smaller than that of the other preparation types. Also, the crystallinity and the crystal size of ipriflavone in the solid dispersed ipriflavone with PVP were much smaller than those of the other preparation types. From the in vivo test, the AUC of the solid dispersed ipriflavone with PVP was approximately 10 times higher than that of the physically mixed ipriflavone with PVP. The solid dispersion using the spray-drying method with a water-soluble polymer, PVP, may be effective for the improvement of the bioavailability.

배추재배지에서 랜더링 가축사체 탄화체의 시용효과 (Application Effect of Rendering Livestock Carcass-Based Carbonized Material in Chinese Cabbage Cultivation)

  • 정태욱;이재훈;노준석;이동열;이정민;박종환;서동철
    • 한국환경농학회지
    • /
    • 제42권3호
    • /
    • pp.177-183
    • /
    • 2023
  • Rendering, is attracting attention as a technology that can stably and quickly process livestock carcasses. However, large amounts of livestock carcass solid residues are discharged in this process and limited methods are available for recycling them. In this study, rendered animal carcass solid residues were pyrolyzed to produce carbonized materials (350℃; RACR-C) and their chemical properties were investigated. Further, RACR-C were applied to cabbage cultivation for investigating their crop growth characteristics and soil improvement effects. RACR-C contained large amounts of fertilizer components such as nitrogen and phosphorus, and showed no toxic effects on the seedling growth of crops. The content of water-soluble nutrients released from RACR-C under the reaction time increased rapidly within 30 min, but was insignificant compared to the total content. Thus, most fertilizer components in RACR-C were not readily soluble in water. The optimal application amount for applying RACR-C to cabbage cultivation based on the changes in cabbage growth, inorganic content, and soil chemistry was 200 kg/10a. Overall, pyrolysis of solid residues after rendering livestock carcass to produce carbonized material as a soil improver is an effective method to recycle the waste discharged from the rendering process.

아시클로비어 고체분산체의 용해도에 대한 수용성 고분자의 종류 및 배합 비율에 따른 효과 (Effect of Types and Mixing Ratios of Water-Soluble Polymers on In Vitro Release Profile of Sold Dispersion for Acyclovir)

  • 안용산;이하영;홍금덕;정성범;조선행;이종문;이해방;강길선
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권4호
    • /
    • pp.289-297
    • /
    • 2004
  • Acyclovir (ACV) is one of the most effective and selective agents against viruses of the herpes group. Because of low solubility, bioavailability of ACV has shown below 30% with oral dosage form. In our previous study, we reported that the fabrication of solid dispersion of ACV was possible and the solid dispersion of ACV and PVP was the most useful in all samples. In this study, we examined the effect of mixture ratio of polymers (PEG and PVP) to ACV. Solubility of ACV was dramatically increased up to 25 mg/ml in $80^{\circ}C$ distilled water. So water was used as a solvent to eliminate problem of residual solvent. Spray drying method was used for the solid dispersion of ACV as solvent extraction. Different scanning calorimeter was used to check degradation of drug. Polymer carriers were PEG 6,000 and PVP. In summary, ACV-PVP (1:3) showed the best solubility in distilled water.

Absorption Enhancer and Polymer (Vitamin E TPGS and PVP K29) by Solid Dispersion Improve Dissolution and Bioavailability of Eprosartan Mesylate

  • Ahn, Jae-Soon;Kim, Kang-Min;Ko, Chan-Young;Kang, Jae-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1587-1592
    • /
    • 2011
  • The aim of the present study was to improve the solubility and bioavailability of a poorly water-soluble drug in human body, using a solid dispersion technique (hot melt extrusion). The solid dispersion was prepared by cooling the hot melt of the drug in the carrier (Vitamin E TPGS and PVP). The dissolution rate of formulation 1 from a novel formulation prepared by solid dispersion technique was equal to release of formulation 6 (40% of eprosartan mesylate is in contrast to teveten$^{(R)}$) within 60 min (Table 1). The oral bioavailability of new eprosartan mesylate tablet having vitamin E TPGS and PVP K29 was tested on rats and dogs. Of the absorption enhancer and polymer tested, vitamin E TPGS and PVP K29, resulted in the greatest increases of AUC in animals (about 2.5-fold increase in rat and dog). When eprosartan mesylate was mixed with the absorption enhancer and polymer in a ratio of 2.94:2:1, vitamin E TPGS and PVP K29 improved eprosartan mesylate bioavailability significantly compared with the conventional immediate release (IR) tablet Teveten$^{(R)}$ (formulation 7). These results show that solid dispersion using vitamin E TPGS and PVP K29 is a promising approach for developing eprosartan mesylate drug products.

초피 Oleoresin 제조시 용매에 따른 추출물특성과 추출조건에 따른 휘발성 성분 변화 (Properties of Chopi Oleoresin Extracted with Various Solvents and Effects of Extraction Conditions on Volatile Components)

  • 최용희;허상선;배동호;김상욱
    • 한국식품영양과학회지
    • /
    • 제27권3호
    • /
    • pp.406-412
    • /
    • 1998
  • Such extraction conditions as the kinds of solvent, extracting temperature, extracting time, ratio of material to solvent and particle size of material, were studied to maximize the extraction of oleoresin from chipi. Larger amount of soluble solids were extracted from seeds with nonpolar solvents (hexane, pentane, ether) for extraction, because the seeds contained large amount of crude fats and monoterpene(limonene) volatile compounds. Larger amount of soluble solids were extracted from peel with polar solvents(methanol, ethanol) of extraction because of large amount of water soluble colors, sugars and oxygenated terpene bolatile compounds in the peel. The application of the solvents in intermediate polarity (dichloromethane, acetone) resulted in more effective extraction of soluble solid and volatile compounds. Expecially, dichloromethane was an excellent solvent in extraction of volatile compounds. In the concern of volatile compound recovery yield, the optimum extraction conditions, such as temperature, time, mixing ratio of material to dichloromethane and mean particle size, were $25^{\circ}C$, 10min, 1:10(w/v), 355~250${\mu}{\textrm}{m}$ for chopi peels and 3$0^{\circ}C$, 10min, 1:8(w/v), 355~250${\mu}{\textrm}{m}$ for chopi seeds, respectively.

  • PDF

테르페나딘-${\beta}$-시클로덱스트린 포접화합물의 제조방법 및 물리화학적 특성 (Preparing Method and Physico-chemical Characteristics of $Terfenadine-{\beta}-Cyclodextrin$ Inclusion Compound)

  • 최한곤;유제만;윤성준
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권3호
    • /
    • pp.219-223
    • /
    • 1997
  • Terfenadine, antihistaminic drug, is poorly soluble in water. The purpose of this study is to investigate the possibility of using $terfenadine-{\beta}-cyclodextrin$ inclusion compound, instead of terfenadine, as the active substance of solid dosage form by improving the solubility, dissolution and anti-histaminic activity of terfenadine. The solubility and binding characteristics of $terfenadine-{\beta}-cyclodextrin$ complex in pH $1.2{\sim}6.8$ were investigated. Furthermore, the preparing method of $terfenadine-{\beta}-\;cyclodextrin$ inclusion compound was setting up and its physico-chemical characteristics such as DSC curve, solubility, dissolution and anti-histaminic activity were investigated. In conclusion, the solubility of terfenadine was increasing ${\beta}-cyclodextrin$ and with the decreasing pH. $Terfenadine-{\beta}-cyclodextrin$ inclusion compound, whose yield is almost 100%, was prepared by neutralization method. This inclusion compound was 200-times as soluble as terfenadine in pH 1.2-6.8. In addition, it had the faster dissolution and anti-histaminic activity than terfenadine. Therefore, it is used to the active substance of solid dosage form such as tablet and capsule in stead of terfenadine.

  • PDF

Functional and Film-forming Properties of Fractionated Barley Proteins

  • Cho, Seung-Yong;Rhee, Chul
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.889-894
    • /
    • 2009
  • Barley proteins are expected to have unique functional properties due to their high content of alcohol soluble protein, hordein. Since the barley proteins obtained by conventional isoelectric precipitation method cannot represent hordein fraction, barley proteins were fractionated to albumin, globulin, glutelin, and hordein with respect to extraction solvents. Functional properties and film-forming properties of solubility-fractionated barley proteins were investigated to explore their potential for human food ingredient and industrial usage. The 100 g of total barley protein comprised 5 g albumin, 23 g globulin, 45 g glutelin, and 27 g hordein. Water-binding capacities of barley protein isolates ranged from 140-183 mL water/100 g solid. Hordein showed the highest oil absorption capacity (136 mL oil/100 g), and glutelin showed the highest gelation property among the fractionated proteins. In general, the barley protein fractions formed brittle and weak films as indicated by low tensile strength (TS) and percent elongation at break (E) values. The salt-soluble globulin fraction produced film with the lowest TS value. Although films made from glutelin and hordein were dark-colored and had lower E values, they could be used as excellent barriers against water transmission.