• Title/Summary/Keyword: water quality restoration

Search Result 281, Processing Time 0.031 seconds

The Effect of Ecological Restoration and Water Purification of Ecological Fish-way and Floodplain Back Wetland Created as Sustainable Structured Wetland Biotope at Maeno Stream (매노천에서 생태적수질정화비오톱(SSB)으로 창출된 생태어도 및 홍수터 배후습지의 생태계 복원과 생태적 수질정화효과)

  • Byeon, Chan-Woo;Kim, Yong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.508-523
    • /
    • 2017
  • This study monitored the changes before and after restoration of ecological stream focusing on the places which are applied Sustainable Structured wetland Biotop (SSB) system and ecological Fish-way for restoration of Maeno stream. A total of 11 species and 191 individuals of fishes were founded out which were not verified inhabitation before restoration at SSB wetlands. Especially, it was could identified that micro habitat and healthy Fish-way was created because the restored target species, Microphysogobio yaluensis and Iksookimia koreensis were identified that habitation was monitored in SSB wetland. Amphibian have been restored to a number of Rana nigromaculata found in and around wetlands at the time of the third survey, which is highly active after restoration. Specified endangered species class 1 and natural monuments designated by the Ministry of Environment, Lutra lutra lutra, as a Mammalian, uses the wetlands and ecological Fish-way as habitat areas, and the his habitat is restored. In the case of Flora, vascular plants emerging in the survey area were increased to 7 and 13 species before restoration and 15 and 19 species directly after restoration, and 22 species and 33 species after restoration. Vegetation after restoration was found to be a basic producer of various ecosystems and a plant community that contributes to the purification of water quality such as Phragmites japonica communities. As the result of water quality monitoring, the average of treatment efficiencies were BOD 64.3%, T-N 47.2%, T-P 80.7%. Successful treatment of the nonpoint pullution source, which is a limiting factor to disturb the ecosystem, creatively restored the target species in the water quality class I, II.

Ecological Assessment of Plant Succession and Water Quality in Abandoned Rice Fields

  • Byun, Chae-Ho;Kwon, Gi-Jin;Lee, Do-Won;Wojdak, Jeremy M.;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.213-223
    • /
    • 2008
  • The increasing area of abandoned rice fields could provide new opportunities for wetland restoration in Asia. However, it is unknown how quickly or completely abandoned rice fields will recover from agricultural disturbances. We assessed water quality and plant community succession in abandoned rice fields with different hydrology in a mountain valley to understand the effects of hydrological regime on recovery. Water level, soil redox potential, water quality, plant composition, and primary production were measured. The sites, coded as D6, N13, and N16, had been recovering for 6, 13, and 16 years by 2006. N13 and N16 have been recovering naturally whereas D6 has been drained with a nearby dike and was tilled in 2001. The typical hydroperiods of D6, N13, and N16 were no surface water, permanently flooded, and seasonally flooded, respectively. The major change in vegetation structure of both D6 and N13 was the replacement of herbaceous species by woody species. Drawdown accelerated this change because Salix koreensis grew better in damp conditions than in flooded conditions. Phragmites japonica reduced plot-level plant species richness. The removal efficiency of $NH_4-N$, $NO_3-N$, and $PO_4-P$ from water varied seasonally, ranging between -78.8 to 44.3%, 0 to 97.5%, and -26.0 to 44.4%, respectively. In summary, abandoned rice fields quickly became suitable habitat for native wetland plant species and improved regional water quality. Variation among our sites indicates that it is likely possible to manage abandoned rice fields, mostly through controlling hydrology, to achieve site-specific restoration goals.

Establishment of Water Quality Standards and Water Quality Target in the Geum-River Basin (금강수계의 물환경기준과 목표수질 설정방안)

  • Yi, Sangjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.438-442
    • /
    • 2013
  • According to Geum-River restoration project, given conditions for management of water environment in the Geum-River were changed. Because of those changes, this study was investigated the establishment of water quality standards and water quality target in the Geum-River basin. For management of water environment in the Geum-River, the sub-basins and watersheds are newly divided and the water quality and ecosystem standards in the sub-basins are reestablished. Considering the consistency of water environment policy and legal system, the legal name of sub-basins and watersheds are unified. TMDL (total maximum daily load) should be implemented in the sub-basin where exceeds the water quality standards and the number of water pollutant among the water quality parameters which exceeds the water quality standards are extremely minimized. The water quality target of water pollutant for implementation of TMDL should be established same or higher concentration of water quality standards.

Influence of Forest Practices on Soil Physical Properties and Facility of Purifying Water Quality in Pinus rigida Stands (리기다소나무 임분에서 산림관리작업이 토양의 물리성 및 산림의 수질정화기능에 미치는 영향)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study site which consists of Pinus rigida in Jinju National University Experimental Forest for 4 years from Mar. 1, 2002 to Nov. 30, 2006. Averaged tree height of the management site increased by 1.6m, compared to the value of the non-management site in Pinus rigida. Increment of averaged D. B. H. at the management site showed 4.2cm more in Pinus rigida compared with that at non-management sites. Mesopore ratios (pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and buffered soil water were influenced more positively by the management practice. The average electrical conductivity of stream water was $32.9{\mu}S/cm$ within the range of non-polluted stream water.

A Study on the Application and Design Procedure of Multi-Purpose Wet Detention Ponds for Improving Water Quality - Case Study of NamAk New Town Development Area - (다목적 저류지의 수질개선을 위한 설계과정 및 적용에 관한 연구 - 남악 신도시 개발지를 대상으로 -)

  • Woo, Chang-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The disposal of stormwater is one of the major problems in urban water management. One method of reducing peak runoff rates and other detrimental impacts of stormwater is detention storage. Detention ponds as a water quality control alternatives have been investigated by a number of researchers. Recognizing multiple roles such as flood peak attenuation, pollution removal and aesthetic enhancement, the design and management of detentions ponds deserve more research. The purpose of this research is to establish design criteria wet detention ponds to improve water quality. Water quality in detention pond discharge might be improve with physical, chemical and biological alterations. Physical alteration was focused in this study. There are several methods for estimating the suspended solid control capability of wet detention ponds. Existing models of suspended solids removal are based on sedimentation and gravity settling theory. The pollutant trap efficiency of pond is a function of several interrelating factors. Detention time is the most important factor, because it determine gravity settling quantities of pollutants. Desirable modification of physical factors for improvement of water quality in wet detention ponds are volume ratio, area ratio, length to width ratio, depth, out let location, bottom soil type. In order to apply design procedure in actual site, Namak new town development area was selected.

A Study on Water Purification Effect of Media Block Using Porous Ceramics and Zeolite (다공성 세라믹과 제올라이트를 활용한 수질정화미디어블럭의 효과 연구)

  • Jeon, Sung-yool;Koo, Bon-hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.59-66
    • /
    • 2017
  • Preeminent water treatment plans are essential to preserve the water quality of aquatic biotopes. Previous studies have not been sufficient to provide cost-effective maintenance method since they focused only on the purification of deteriorated water that requires a continuous supply of clean water. This study proposes an economical method of water quality maintenance using water treatment media block constructed vertically using porous ceramics, zeolite, and river pebble. The water treatment media block does not require a separate purification area because it functions as a purifier within the ecological pond which can maximize the biotope area. To evaluate the performance of the water treatment media block, we longitudinally tracked the change of water quality indicators (pH, TDS, COND, DO, T-P, T-N, COD) suggested by Water Environment Standards, Ministry of Environment, Republic of Korea. We compared the water quality of one control (A: general ecological pond composition method of the laminated structure) and two experimental groups (B: a combination of aquatic plants and a water treatment media block, C: a water treatment media block only). As a result, we confirmed that the water treatment media block is an efficient and economical method to maintaining the water quality of the ecological pond for a long time. The water treatment media block will be a great help in providing a better aquatic biotope space for aquatic insects and fishes living in clear water.

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

Influences of the Solifluction Soil on the Physicochemistry of Stream Water Quality (계류수의 이화학성에 미치는 동결융해침식토사의 영향)

  • Park, Jae Hyeon;Lee, Seung-Woo;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.17-24
    • /
    • 2002
  • This research was conducted to investigate the influences caused by solifluction soil on the physicochemistry of stream water quality at the riparian area four points in the northeastern part of the Bughansan National Park from March to May of 2001. The average pH of stream water was higher than those in the caused by solifluction soil. The average electrical conductivity of upstream water was about 0.8~1.7 times lower than those in the caused by solifluction soil, but the average electrical conductivity of downstream water was about 1.6~3.8 times higher than those in the caused by solifluction soil. Therefore, these results showed that the water quality of downstream was worse than that of upstream. Twelve factors including the physicochemistry on the stream water and caused by solifluction soil were analyzed by spss/pc+ for the data collected from during March to May of 2001. pH of stream water was very significantly correlated with pH and electrical conductivity at the caused by solifluction soil. And the electrical conductivity of stream water was very significantly correlated with electrical conductivity and the amount of cation($Na^+$, ${NH_4}^+$, $Mg^{2+}$) at the caused by solifluction soil.