• Title/Summary/Keyword: water quality indices

Search Result 223, Processing Time 0.025 seconds

Physical and Chemical Quality of Organic by Product Fertilizers by Composting of Livestock Manure in Korea (가축분뇨를 원료로 하는 부산물 비료의 부숙화에 따른 물리화학적 특성변화)

  • Lee, Chang-Ho;Ok, Yong-Sik;Yoon, Young-Man;Kim, Dae-Yeon;Lim, Soo-Kil;Eom, Ki-Chul;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.224-229
    • /
    • 2006
  • Utilization of organic by-product fertilizers has many beneficial effects on agricultural activities and in aspects of the disposal of enormous amounts of livestock manure. Most of these beneficial effects are related to the improvement of soil condition, such as fertility status and physicochemical quality of soil. But, appropriate indexes are needed to effectively manage the quality of organic by-product fertilizers amended on soil. To find chemical and physical standard to control the compost quality, the changes in chemical and physical characteristics of organic by-product fertilizers during composting were investigated, and also an appropriate physical method for this end. The results showed chemical properties, such as humic acid content, OM/N ratio, cation exchange capacity and salt content, had significant relationships during the composting. The water content, particle and bulk densities, particle size and color indices, as physical properties, were also applicable factors for the quality control of compost.

The Variation of Benthic Macroinvertebrates Caused by Erosion Control Works in a Torrential Stream - Focused on Variation of Benthic Macroinvertebrates Analyzed immediately after Construction Works - (황폐계류의 사방공작물 시공에 따른 저서성 대형무척추동물상의 변화 - 시공 직후의 변화를 중심으로 -)

  • Lee, Do-Hyung;Lee, Ki-Hwan;Lee, Heon-Ho;Ma, Ho-Seop;Bae, Kwan-Ho;Kim, Jong-Hyon
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.4
    • /
    • pp.353-364
    • /
    • 2009
  • This study was conducted to evaluate the effect of erosion control works on the stream ecosystem in a mountain torrential stream. The species composition of benthic macroinvertebrates and biological water quality were investigated before and after construction of erosion control works at 5 sites. The total number of benthic macroinvertebrates before construction was 3,086 individuals including 4 phyla, 6 classes, 11 orders, 22 families, and 25 species, but after construction it has decreased to 1,208 individuals including 4 phyla, 6 classes, 10 orders, 17 families, and 19 species. Especially, the diversity, richness, and evenness indices, which were calculated based on existing number of biological species, have decreased or not produced at the erosion control sites, where biological species were not found or the minimum number of species were found. The results of community analysis of benthic macroinvertebrates and ESB(Ecological Score of Benthic macroinvertebrate community) indicated that the environmental qualities of the stream based on saprobity, environmental condition, and water quality decreased after the construction at all sites: before construction, the top of the stream was satisfactory and some satisfactory, the middle was some defectiveness, and the lower was defectiveness and very defectiveness; after construction, all parts of the stream except some parts of the top were very defectiveness. Moreover, the water quality of torrential stream was rated between I to III before construction, but after construction, it declined to $IV{\sim}V$ except control. The habitat damage of benthic macro invertebrates occurred at all investigation sites after the construction of erosion control works led to reduction of the number of biological species and water quality deterioration. The results reported in this study were collected directly after the construction of erosion control works. Therefore, additional studies are needed to further explore the effect of disaster-prevention of erosion control works and the recovery process of stream ecosystem through long term monitoring.

Improvement of Dispersibility of Parched Cereal Powder by Agglomeration Treatment (응집처리를 통한 미숫가루의 분산성 개선)

  • Lee, Chang-Sung;Lee, Keun-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.385-390
    • /
    • 1998
  • The effect of agglomeration treatment was examined to prevent the parched cereal powder from clumping when it is blended with water. Parched cereal powder was composed of 66.9% carbohydrate, 7% water, 12.1% crude protein, 12.1% crude fat and 1.9% ash, respectively. Particle size of parched cereal powder was generally enlarged by agglomeration treatment. This phenomenon was confirmed by particle size analyzer and microscopic observation. The color of agglomerated sample was shown to be slightly darker than the untreated sample. The water absorption indices of agglomerated samples which were steamed for 2min and re-dried were significantly increased as compared with the untreated sample. The water solubility indices of agglomerated samples showed generally lower values than those of untreated samples. In views of quality and processing time, the optimum condition of agglomeration treatment for manufacturing well-dispersable parched cereal powder in water was 15min re-drying after 2min steaming. It is concluded that the agglomeration treatment improves the dispersibility of parched cereal powder and thus facilitates the intake of it after mixing with water.

  • PDF

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.

Quality Characteristics of Sponge Cake Supplemented with Soy Fiber Flour (콩섬유 복합분을 첨가한 스펀지 케이크의 품질 특성)

  • Park, Ji-Young;Park, Young-Seo;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.412-418
    • /
    • 2008
  • The replacement of wheat flour with 4 to 24% soy fiber FIBRIM(R)1450 was evaluated to determine its effect on the properties of sponge cake. The volume and specific loaf volume decreased as the amount of soy fiber increased. In addition, the protein content and water holding capacity (WHC) were negatively correlated with the specific gravity of batter and the specific loaf volume of sponge cake, whereas there was no correlation between the mixograph characteristics and specific loaf volume of sponge cake in response to the addition of soy fiber. Furthermore, the symmetry and uniformity indices were not influenced by the addition of soy fiber. However, the L values of sponge cake crust and crumb decreased with increasing amounts of soy fiber, whereas a and b values were not affected. Additionally, the hardness, gumminess, and chewiness of the sponge cake all showed positive correlations with the protein content, sedimentation value, WHC and alkaline water retention capacity. Finally, the results of sensory evaluation indicated that external and internal colors, grain, texture, and flavor were not influenced by the addition of soy fiber, but that supplementation with over 20% soy fiber resulted in a slight decrease in taste and overall acceptability.

Study of the Trophic State Assessment and Analysis of Water Quality Improvement by Dredging in Hwoiya Reservoir (회야호 부영양화 평가 및 준설에 의한 수질개선 효과 분석 연구)

  • Suh, Myung-Gyo;Lee, Sang-Hyeon;Suh, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6943-6951
    • /
    • 2014
  • The trophic state assessment of the Hwoiya reservoir was estimated using the Trophic state indices (TSIs) of Carlson and Aizaki using the transparency and concentrations of chlorophyll-a and total phosphorus obtained from two sites of the reservoir. The TSIs assessments showed that eutrophic phenomena occur frequently in the Hwoiya reservoir. In addition, strategies to reduce the phosphorus especially would be prepared because the Hwoiya reservoir exceeded phosphorus-limiting state of 17 < TN/TP (total nitrogen/total phosphorus). Three scenarios for a simulation of the dredging effect of sediments on the water quality using the WASP7 model were made at two sites, which were 10% (scenario 1), 40% (scenario 2) and 60% elution of the pollutants from sediments (scenario 3). In the most elution case (60%), scenario 3, it was considered that 6.4% TN and 9.3% TP at site 1, and 3.9% TN and 5.6% TP at site 2 could be reduced.

Landscape Analysis of the Forest Fragmentations at Doam-Dam Watershed using the FRAGSTATS Model (FRAGSTATS 모형을 이용한 도암댐 유역의 산림 파편화 분석)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoung-Jae;Choi, Joong-Dae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2007
  • The Doam-dam watershed, located at Kangwon Province, Korea, has been experiencing significant changes in land uses, conversion from forest to agricultural/urban areas, with human involvements. However, no thorough investigation of the landscape impacts of land use changes was performed at this watershed using the scientific analytical tool. Thus, the FRAGSTATS model was utilized to quantitatively analyze the landscape impacts of forest fragmentation in this study. To provide the detailed explanations for 11 landscape indices considered in this study, two artificial and simplified landscapes, before and after fragmentations, were constructed. Using these 11 indices, the landscape impacts of forest fragmentation in 19 subwatersheds of the Doam-dam watershed were analyzed. The S1 subwatershed, one of 19 subwatersheds of the Doam-dam watershed, was found to have experienced the significant forest fragmentation from 1985 to 2000 based on landscape analysis using the FRAGSTATS model. The results obtained in this study can be used to evaluate the water quality impacts of forest fragmentations/land use changes at watershed scale level, and establish environment-friendly land use planning based on the results obtained using landscape analytical tool, FRAGSTATS.

  • PDF

Effects of Microbial Additives and Silo Density on Chemical Compositions, Fermentation Indices, and Aerobic Stability of Whole Crop Rice Silage (미생물 첨가와 사일로 밀도가 총체벼 사일리지의 영양소 함량, 발효특성 및 호기적 안전성에 미치는 영향)

  • Joo, Young Ho;Jeong, Seung Min;Seo, Myeong Ji;Lee, Seong Shin;Choi, Ki Choon;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR ("Youngwoo") was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.