Physical and Chemical Quality of Organic by Product Fertilizers by Composting of Livestock Manure in Korea

가축분뇨를 원료로 하는 부산물 비료의 부숙화에 따른 물리화학적 특성변화

  • Lee, Chang-Ho (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Ok, Yong-Sik (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yoon, Young-Man (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Dae-Yeon (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lim, Soo-Kil (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Eom, Ki-Chul (National Institute of Agricultural Science Technology) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • 이창호 (고려대학교 환경생태공학부) ;
  • 옥용식 (고려대학교 환경생태공학부) ;
  • 윤영만 (고려대학교 환경생태공학부) ;
  • 김대연 (고려대학교 환경생태공학부) ;
  • 임우길 (고려대학교 환경생태공학부) ;
  • 엄기철 (농업과학기술원) ;
  • 김정규 (고려대학교 환경생태공학부)
  • Received : 2006.08.01
  • Accepted : 2006.08.16
  • Published : 2006.08.28

Abstract

Utilization of organic by-product fertilizers has many beneficial effects on agricultural activities and in aspects of the disposal of enormous amounts of livestock manure. Most of these beneficial effects are related to the improvement of soil condition, such as fertility status and physicochemical quality of soil. But, appropriate indexes are needed to effectively manage the quality of organic by-product fertilizers amended on soil. To find chemical and physical standard to control the compost quality, the changes in chemical and physical characteristics of organic by-product fertilizers during composting were investigated, and also an appropriate physical method for this end. The results showed chemical properties, such as humic acid content, OM/N ratio, cation exchange capacity and salt content, had significant relationships during the composting. The water content, particle and bulk densities, particle size and color indices, as physical properties, were also applicable factors for the quality control of compost.

다량으로 배출되고 있는 축산분뇨를 퇴비화 하여 농지로 투입하는 것은 토양의 물리화학성 개선 등의 유효한 효과가 있지만, 적절한 부숙화 과정을 거치지 않은 미부숙 물질을 투여하면 나쁜 영향을 끼치게 된다. 축산분뇨를 이용한 부산물 비료의 제조에 있어서 적절한 부숙도 관리가 중요한 이유이다. 따라서 축산부산물을 주원료로 하고 부재료와 부숙 기간을 7가지 단계로 달리한 부산물비료를 대상으로 부숙화에 따른 화학성의 변화 경향 파악과 색도, 점도, 입도, 용적밀도 등의 물리성 변화를 아울러 조사하여, 부숙도에 대한 판정지표를 추출하고자 하였다. 휴민산 함량, 유기물/질소 비율, 양이온치환용량, 염함량 등의 화학성이 부숙정도와 밀접한 관련이 있었으며, 물리적 특성에서는 수분함량, 입자밀도 및 용적밀도, 입경별 분포, 색도 등이 부숙도의 판정지표로 사용할 수 있음을 알 수 있었다.

Keywords

References

  1. Bernal, M.P., C. Paredes, M.A. Sanchez-Monedero, and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63, 91-99 https://doi.org/10.1016/S0960-8524(97)00084-9
  2. Chanyasak, V. and H. Kubota. 1981. Carbon/organic nitrogen ratio in water extract as measure of compost degradation. J. Ferment. Technol., 59,215-219
  3. Cho, I.S. 2001. Soil management in paddy field. In Proceedings of international symposium on soil and water management. Kor. Soc. Soil Sci. and Fert., p. 64-87, Korea
  4. De Bertoldi, M. G. Vallini and A. Pera. 1984. Composting of agricultural and other wastes. Ed. Gasser JKR, p. 27-34, Elsevier, Amsterdam
  5. Gomez, A. 1998. The evaluation of compost quality. Trends in Analytical Chemistry, 17(5),310-314 https://doi.org/10.1016/S0165-9936(98)00013-2
  6. Harada, Y. and A. Inoko. 1980. Relationship between cation exchange capacity and degree of maturity of city refuse composts. Soil Sci. Plant Nutr., 26, 353-362 https://doi.org/10.1080/00380768.1980.10431220
  7. Hayes, M.H.B. 1985. Extraction of humic substances from soil. In Humic substances in soil, sediment and water, Geochemistry isolation and characterization, p. 34-56, Wiley Interscience, New York
  8. Inbar, Y., Y. Chen and Y. Hadar. 1990. New approaches to compost maturity. BioCycle, 31, 64-68
  9. Kirchmann, H. and P. Widen. 1994. Separately collected organic household wastes. Swedish J. Agric. Res. 24, 3-12
  10. Kubat, J. 1992. Humus, its structure and role in agriculture and environment. Elsevier, New York
  11. Lax, A., A. Roig and F. Costa. 1986. A method for determining the cation exchange capacity of organic materials. Plant and Soil, 94, 349-355 https://doi.org/10.1007/BF02374329
  12. MOAF (Ministry of Agriculture and Forest) 2002. Law of Fertilizer Management, Republic of Korea (in Korean)
  13. MOE (Ministry of Environment) 2002. 2002 Environmental Whitebook, p. 419-424, Kwacheon, Republic of Korea (in Korean)
  14. NIAST (National Institute of Agricultural Science and Technology) 1996. The official test methods for the fertilizer quality and sampling guideline, p. 16-75, Suwon, Republic of Korea (in Korean)
  15. Park, Y.H. 2001. Soil management in upland. In Proceedings of international symposium on soil and water management. p. 88-119, Korean Society of Soil Science and Fertilizer, Republic of Korea
  16. Tiquia, S.M., N.F.Y. Tam and I.J. Hodgkiss. 1998. Changes in chemical properties during composting of spent pig litter at different moisture contents. Agriculture, Ecosystems and Environment, 67, 79-89 https://doi.org/10.1016/S0167-8809(97)00132-1
  17. Yang, J.E., C.J. Park, M.G. Shin MG, Y.H. Park, M.H. Choi, J.G. Kim and lJ. Kim. 1999. Changes in spectroscopic characteristics of bark and piggery manure by-products composts during the compost. Korean J. Environ. Agri., 18(4),378-383 (in Korean with English summary)
  18. Zucconi, F and M. de Bertoldi. 1987. Compost specifications for the production and characterization of compost from municipal solid waste. P. 30-50. In Compost: production, quality and use, Ed. de Bertoldi M, Ferranti MP, L'Herrnite P and Zucconi F, Elsevier Applied Science, Essex
  19. Zucconi, F, A. Pera, M. Forte and M. de Bertoldi. 1981. Evaluating toxicity of immature compost. BioCycle, 22, 54-57