• Title/Summary/Keyword: water pipe

Search Result 1,709, Processing Time 0.03 seconds

Consideration of Pressure-Rise and Water Hammer for Pipe System in Relation to Start-Up and Sudden Stop of the Pump (펌프 기동 및 정지에 따른 배관 압력상승과 수격작용 영향 고찰)

  • Heo, Min Woong;Min, Ji Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • In the fire protection system or fire fighting water supply system, the jockey pump is generally installed for the prevention of the pressure decrease of pipes, the frequent driving of the fire pump and protection the pipes from the water hammer. In this paper, the pressure-rise in fire fighting water distribution pipes in condition of pipe pressurization by the surge tank at the start-up and the sudden-stop of the fire pump without additional installation of jockey pump is considered by using simple formula calculations and the evaluation of water hammer occurrence in condition of pipe pressurization by the surge tank is included. As a result, the pressure-rise of pipes is less than the pipe design pressure at the condition of pump's start-up and sudden stop, and the possibility of water hammer occurrence is remarkably low due to pressurization of the pipes by the surge tank.

Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system (자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구)

  • kim, Jinwon;Kim, Donghyun;Lee, Younggun;Lee, Sewan;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

Characteristics of Community-Level Physiological Profile (CLPP) of Biofilm Microorganisms Formed on Different Drinking Water Distribution Pipe Materials (수도관 재질에 따른 생물막 형성 미생물의 Community-Level Physiological Profile(CLPP) 특성)

  • Park, Se-Keun;Lee, Hyun-dong;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2006
  • This study investigated the physiological characteristics of biofilm microorganisms formed onto the different drinking water distribution pipe surfaces. The simulated drinking water distribution pipe system which had several PVC, STS 304, and GS coupons was operated at flow velocity of 0.08 m/sec (Re 1,950) and 0.28 m/sec (Re 7,300), respectively. At velocity of 0.08 m/sec, the number of viable heterotrophic bacteria in the biofilm over the 3 months of operation averaged $3.3{\times}10^4$, $8.7{\times}10^4$, and $7.2{\times}10^3CFU/cm^2$ for PVC, STS, and GS surfaces, respectively. The number of attached heterotrophic bacteria averaged $1.4{\times}10^3$, $5.6{\times}10^2$, and $6.5{\times}10^2CFU/cm^2$ on PVC, STS, and GS surfaces at the system with relatively high flow velocity of 0.28m/sec. The changes of physiological profile of biofilm-forming microorganisms were characterized by community-level assay that utilized the Biolog GN microplates. Biofilms that formed on different pipe surfaces displayed distinctive patterns of community-level physiological profile (CLPP), which reflected the metabolic preference for different carbon sources and/or the utilization of these carbon sources to varying degrees. The CLPP patterns have shown that the metabolic potential of a biofilm community was different depending on the pipe material. The effect of the pipe material was also characterized differently by operation condition such as flow rate. At flow velocity of 0.08 m/sec, the metabolic potential of biofilm microorganisms on GS surface showed lower levels than PVC and STS biofilms. For biofilms on pipe material surfaces exposed to water flowing at 0.28 m/sec, the metabolic potential was in order of PVC>GS>STS. Generally, the levels of the bacterial biofilm's metabolic potentials were shown to be notably higher on pipe surfaces exposed to water at 0.08 m/sec when compared to those on pipe surfaces exposed to water at 0.28 m/sec.

Calculations of probability of pipe breakage according to service year (상수도관의 사용연수에 따른 관파괴확률 산정)

  • Kwon, Hyuk Jae;Kim, Hyeong Gi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.555-563
    • /
    • 2019
  • Reduced thickness of the water pipes due to corrosion makes it difficult to perform the original functions since corrosion in metallic water pipes can occur over time. In this study, reliability model that can estimate the probability of pipe breakage is developed regarding corrosion depth increment according to service year. Probability of pipe breakage was calculated by FORM(First Order Reliability Method) and unsteady analysis was performed to analyze the statistical properties of water pressure. And KCIP(Korea Cast Iron Pipe) equation was adopted for the reliability function. Furthermore, change of pipe thickness was estimated by Nahal and Khelif equation and Romanoff equation. Therefore, pipe thickness was calculated due to change of corrosion depth and probability of pipe breakage was calculated and compared with 10, 20, 30 service years. From the results, probability of pipe breakage for network A is gradually increased from 6.8% to 8.6% according to service year of 10, 20, 30 when Nahal and Khelif equation is applied. And probability of pipe breakage for network A is also gradually increased from 6.4% to 8.9% according to service year of 10, 20, 30 when Romanoff equation is applied.

Comparison of Biofilm Formed on Stainless Steel and Copper Pipe Through the Each Process of Water Treatment Plant (정수처리 공정 단계별 스테인리스관과 동관에 형성된 생물막 비교)

  • Kim, Geun-Su;Min, Byung-Dae;Park, Su-Jeong;Oh, Jung-Hwan;Cho, Ik-Hwan;Jang, Seok-Jea;Kim, Ji-Hae;Park, Sang-Min;Park, Ju-Hyun;Chung, Hyen-Mi;Ahn, Tae-Young;Jheong, Weonhwa
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2013
  • Biofilm formed on stainless and copper in water treatment plant was investigated for sixteen weeks. Biofilm reactor was specially designed for this study. It was similar to that of a real distribution pipe. Raw water, coagulated, settled, filtered and treated water were used in this study. The average number of heterotrophic bacteria counts was $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml, respectively. Density of biofilm bacteria formed on stainless and copper pipes in raw, coagulated and settled water increased above $2.9{\times}10^3CFU/cm^2$ within second weeks while more biofilm bacteria counts were found on the stainless pipe than on the copper pipe. In case of filtered water (free residue chlorine 0.44 mg/L), there was no significant difference in the number of biofilm bacteria on both pipes and biofilm bacteria below $18CFU/cm^2$ were detected on both pipe materials after fifth weeks. Biofilm bacteria were not detected on both pipe materials in treated water (free residue chlorine 0.88 mg/L). According to the results of DGGE analysis, Sphingomonadacae was a dominant species of biofilm bacteria formed on the stainless pipe while the copper pipe had Bradyrhizobiaceae and Sphingomonadaceae as dominant bands. In case of filtered water, a few bands (similar to Propionibacterium sp., Sphingomonas sp., Escherichia sp., and etc.) that have 16S rRNA sequences were detected in biofilm bacteria formed on both pipes after fifth weeks. Stainless pipe had higher species richness and diversity than the copper pipe.

A Study for Drainage Pipe Construction Method using a Boring Machine (천공장치를 이용한 배수설비 연결관 시공 기술에 관한 연구)

  • Chang, Jae-Goo;Kang, Seon-Hong;Kim, Dong-Eun;Jung, Tae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.869-875
    • /
    • 2011
  • Ministry of Environment has been promoting BTL business of the sewer rehabilitation which continues from 2005 up to now. Sewer rehabilitation is classified into three parts : wastewater pipe rehabilitation, rainwater pipe rehabilitation and drainage equipment rehabilitation. Drainage equipment rehabilitation is that drainage pipe connects wastewater pipe directly without water-purifier. In the drainage equipment construction, it is inevitable to have the damage of ground structures(wall, gate and U drain, etc) when an open excavation method is used. Therefore it is necessary to develop non-excavation method to connect drainage pipe and wastewater pipe like jacking method to avoid the damage of ground structure. This paper has conducted an analysis of the non-excavation method using a boring machine attached to backhoe, which is issued the verification certificate of environmental technology according to the Development of and Support for Environmental Technology Act, article.7. The index set in this analysis was sectionalized to the condition of construction, the grade of drainage pipe, the size of excavated hole, the amount of waste cement concrete and asphalt concrete and the benefit effect compared to open excavation method.

Optimal Pipe Replacement Analysis with a New Pipe Break Prediction Model (새로운 파괴예측 모델을 이용한 상수도 관의 최적 교체)

  • Park, Suwan;Loganathan, G.V.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.710-716
    • /
    • 2002
  • A General Pipe Break Prediction Model that incorporates linear and exponential models in its form is developed. The model is capable of fitting pipe break trends that have linear, exponential or in between of linear and exponential trend by using a weighting factor. The weighting factor is adjusted to obtain a best model that minimizes the sum of squared errors of the model. The model essentially plots a best curve (or a line) passing through "cumulative number of pipe breaks" versus "break times since installation of a pipe" data points. Therefore, it prevents over-predicting future number of pipe breaks compared to the conventional exponential model. The optimal replacement time equation is derived by using the Threshold Break Rate equation by Loganathan et al. (2002).

A Study on the Improvement of Efficiency of Heat Transfer of Double Pipe Heat Exchanger with Helical Insert Device on Cooling of a Fuel Cell (연료전지 냉각용 헬리컬 인서트디바이스 이중관열교환기의 열전달 성능 향상에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1872-1879
    • /
    • 2015
  • The present study was conducted on the improvement of the heat transfer performance of double pipe heat exchangers with helical insert device. Double pipe heat exchangers with helical insert device were studied for improvement of the heat transfer performance of double pipe heat exchangers with helical insert device and plain double pipe heat exchangers were also studied to comparatively analyze heat transfer performance. Experimental results were derived on changes in the Reynold's numbers of the cooling water flowing in helical and plain double pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical total energy and the experimental total energy were comparatively analyzed and the following results were derived. The thermal energy of the calorie lost by the hot air and that of the calorie obtained by the cooling water were well balanced. The experiments of plain double pipe heat exchangers and double pipe heat exchangers with helical insert device were conducted under normal conditions and the theoretical overall heat transfer coefficient value and the experimental overall heat transfer coefficient value coincided well with each other. In both plain double pipe heat exchangers and double pipe heat exchangers with helical insert device, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of double pipe heat exchangers with helical insert device was shown to be higher by approximately 1.5 times than that of plain double pipe heat exchangers.

EMP Shielding Effectiveness of Water Pipe Structure Considering Attenuation Characteristics of Water (물의 감쇠특성을 고려한 배수관 구조의 EMP 차폐 효과 분석)

  • Kim, Woobin;Kim, Sangin;Kim, Waedeuk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.1011-1014
    • /
    • 2017
  • Additional metal shielding is installed in the water pipes used in septic tanks to protect against damage from electromagnetic pulse (EMP) events. This shielding prevents EMP damage, but impurities present in water cannot pass through the shielding structure. Thus, the original function of the water pipes is lost as the pipes are blocked, and an additional maintenance workforce is needed to manage this blockage. To solve this problem, we propose a water pipe without an additional shielding structure; the proposed pipe was designed with consideration of the attenuation characteristics of water. The immersed depth was varied from 400 mm to 800 mm, while the diameter of the pipe was fixed at 100 mm. The shielding effectiveness increased from 70 dB to 100 dB around 2 GHz. Through the verification process, we propose an effective design guideline that can maintain the function of the water pipe and provide protection from EMP damages without additional shielding structure.