• Title/Summary/Keyword: water pipe

Search Result 1,715, Processing Time 0.022 seconds

Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS). (원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구)

  • Song, Dho-In;Choi, Young-Don;Park, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF

Analysis of hydraulic system for seawater desalination plant through piping analysis program (배관 해석 프로그램을 통한 해수담수화 플랜트 수압 시스템 분석)

  • Choi, Jihyeok;Choi, Yongjun;Yang, Heungsik;Lee, Sangho;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.221-230
    • /
    • 2020
  • In actual seawater desalination plant, the pressure loss due to frictional force of pipe is about 3~5 bar. Also, the pressure loss at pipe connection about 1~3 bar. Therefore, the total pressure loss in the pipe is expected to be about 4~8 bar, which translates into 0.111 to 0.222 kWh/㎥ of energy when converted into the Specific Energy Consumption(SEC). Reducing energy consumption is the most important factor in ensuring the economics of seawater desalination processes, but pressure loss in piping is often not considered in plant design. It is difficult to prevent pressure loss due to friction inside the pipe, but pressure loss at the pipe connection can be reduced by proper pipe design. In this study, seawater desalination plant piping analysis was performed using a commercial network program. The pressure loss and SEC for each case were calculated and compared by seawater desalination plant size.

Development of Three-Way Proportional Control Valve and Performance Study (3방 비례제어 조절밸브 개발 및 성능 연구)

  • Lee, Jonghwa;Jung, Taeksu;Cho, Chongdu;Kim, Jooyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.218-223
    • /
    • 2014
  • Korea District heating corp. recently give an attention to combine the district heating and supply pipes as a two pipe system that are in the present system separated with room heating and warm water supply pipe, and the two pipe system is commonly applied for heating service in European countries. In the new two pipe system, only one heat source is supplied to a house and partitioned into room heating and warm water supply by household substation. So the effective distribution of supplied heat source in accordance to user intention is very important. This paper presents the development and performance test of three-way proportional control valve for a combined heat source system in district heating. The proposed valve is controlled to partition heat source into two different directions : hot water distributor for space heating and household substation for warm water supply in response to the pressure drops of tap water caused by the user. The performance investigation is shown within 3% of error compared to the theoretical model of the three-way proportional valve and its controllability is verified.

Corrosion Reduction Techniques of Pipe Line Net Using DVGW (DVGW이론에 따른 상수관망의 부식방지에 관한 연구)

  • Choo, Tai-Ho;Kim, Ha-Il;Je, Sung-Jin;Ok, Chi-Youl
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.310-316
    • /
    • 2006
  • Leakage of waterworks pipe line net cause loss of water resources, additional foundation of pressurization facilities from pressure loss and soil weakening near leaked pipe line, etc.. This makes it difficult to maintain and manage waterworks pipe line net and so cause serious economic loss. The rate of accounted water can be improved by monitoring always water pressure and flux, and so on. from isolated region, preparing positively against leakage accident and preventing leakage from occurring. Actually after isolating region, average rate of accounted water in this region went up 88.94% by continuously monitoring control of water pressure and inflow rate. It is about 9.44% higher than that of Busan metropolitan city in 2003, 79.5%.

  • PDF

Development of a System Dynamics Model to Support the Decision Making Processes in the Operation and Management of Water Supply Systems (상수도 시스템의 운영 및 유지관리 의사결정 지원을 위한 시스템다이내믹스 모형의 개발)

  • Park, Su-Wan;Kim, Kyu-Lee;Kim, Bong-Jae;Lim, Ki-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.609-623
    • /
    • 2010
  • In this paper the feedback loop mechanisms that are inherent in the management of water supply systems were identified based on the system dynamics modeling methodology. As a result, a system dynamics (SD) computer simulation model that can be used to aid efficient management of water supply systems was developed. The developed SD model can be used to predict operating conditions of water supply systems including the effects of pipe maintenance on the entire system. The developed model is consisted of water supply, pipe maintenance and water supply business finance model. The operation and maintenance data from a study water supply system were used to verify the model and to predict the past and future operating conditions of the system. The policy leverage that greatly affects the operating condition was evaluated by the sensitivity analyses for the operational indices due to changes in the exogenous variables. It was found that while the pipe maintenance related exogenous variables had great effects on the leakage and conditions of pipes, they did not have great effects on the major operational indices such as revenue water ratio. It is considered that the social costs due to leaks and pipe breaks and the corresponding mechanism of propagation of the costs must be modeled to better evaluate the effects of pipe maintenance on the operational conditions of water supply systems.

Transient Forces on Pipe Bends by the Propagation of Pressure Wave

  • Woo, Hyo-Seop;Papadakis, C.N.;Kim, Won
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.99-105
    • /
    • 1995
  • External forecs acting on a pipe bend change when a transient pressure wave propagates through the bend. Analytical expressions are derived to compute the changes of these forces which depend mainly on static pressure rather than fluid momentum. This analysis reveals that the change of the vertical component of the force acting on a pipe bend with an angle larger than 90 may reverse in direction during the passage of a pressure wave through the bend.

  • PDF

Characteristics of Corrosion and Water Quality in Simulated Reclaimed Water Distribution Pipelines (모형 재이용관을 이용한 하수재이용수의 부식 및 수질영향 연구)

  • Kang, Sung-Won;Lee, Jai-Young;Lee, Hyun-Dong;Kim, Gi-Eun;Kwak, Pill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.473-479
    • /
    • 2012
  • Water reuse has been highlighted as a representative alternative to solve the lacking water resource. This study carried out a study on the pipe corrosion and water quality change which can occur through the supply of reclaimed water, using a simulated reclaimed water distribution pipeline. Galvanized steel pipe (GSP), cast iron pipe (CIP), stainless steel pipe (STSP) and PVC pipe (PVCP) were used for the pipe materials. Reclaimed water(RW) and tap water(TW) were respectively supplied into simulated reclaimed water distribution pipelines. As a result of performing a loop test to supply reclaimed water to simulated reclaimed water distribution pipelines, the weight reduction of pipe coupons showed the sequence of CIP > GSP > STSP ${\approx}$ PVCP. In addition, reclaimed water showed a high corrosion rate comparing to that of tap water. In case of CIP, the initial corrosion rate showed 3.511 mdd(milligrams per square decimeter per day) for reclaimed water and 2.064 mdd for tap water and the corrosion rate for 90 days showed 0.833 mdd for reclaimed water and 0.294 mdd for tap water. Also in case of GSP, the initial corrosion rate showed 2.703 mdd for reclaimed water and 2.499 mdd for tap water and the corrosion rate for 90 days showed 0.349 mdd for reclaimed water and 0.248 mdd for tap water, which was a tendency similar to that appeared in CIP with a tendency to reduce the corrosion rate. As a result of water quality changes of reclaimed water at pipe materials to carry out the loop test, there was higher conversion ratio of ammonia into nitrate in CIP and GSP with higher corrosion rate than that in STSP and PVCP where no corrosion has occurred. The highest denitrification rate of nitrate could be observed from CIP with the most particles generated from corrosion. In CIP, it could be confirmed that there was MIC (Microbiologically Induced Corrosion) as a result of EDS (Energy Dispersive X-ray spectrometer System) analysis results.

Probability of Pipe Breakage for Pipe Network with Surge Tank regarding Unsteady Effect (부정류 효과를 고려한 조압수조가 있는 상수관망의 파괴확률)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.785-793
    • /
    • 2009
  • Numerical model which can simulate the surge tank for unsteady flow was developed in the present study. Furthermore, reliability model which can calculate the probability of pipe breakage regarding unsteady effect was developed. For the risk estimation of pipe breakage and functional estimation of surge tank, probability of pipe breakage for pipe network with surge tank was calculated regarding unsteady effect. From the results, it was found that unsteady flow significantly increase the probability of pipe breakage and surge tank considerably decrease probability of pipe breakage as damping out the pressure oscillations.

Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House (컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

Experimental Study of Solid-water Slurry Flow in Vertical Pipe (수직관내 고-액 슬러리 유동 계측 실험연구)

  • Choi, Jong-Su;Hong, Sup;Yang, Chan-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.160-163
    • /
    • 2001
  • In order to develop a nodule conveying system through a flexible pipe out of the deep-seabed manganese nodule miner, an experimental study of the solid-water slurry flow in vertical pipe is performed as the first stage of total experiments. Hydraulic characteristics of the pipe slurry flow such as slip velocity, transport concentration and pressure gradient are investigated for the size of particle, load ratio, and flow rate of water. The higher the load ratio is, the larger the transport concentration and pressure gradient become. The bigger the size of particles is, the larger the pressure gradient becomes. The effectiveness of the flow rate to hydraulic performance is also investigated. This results are to be used for designing crusher and pump, and operating the conveying device.

  • PDF