• Title/Summary/Keyword: water monitoring

Search Result 3,453, Processing Time 0.027 seconds

Strengthen the Construction of Water Resources Monitoring Ability, Support the Strictest System of Water Resources management

  • Jiang, Yun-Zhong;Yi, Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.27-33
    • /
    • 2012
  • At present, the overall water resources monitoring ability in China is weak since there is an absence of a sound monitoring system and comprehensive monitoring information. In addition to the problem of weak management ability in monitoring, measurement and information, it can hardly meet the need of implementing the strictest management system of water resource and also restricts the practice of the system to some extent. The production states the necessity of further development of water resources monitoring ability and points out the concept of "One Country, One Account" for constructing water resources information. There is an analysis on the demand on further development of water resources monitoring ability and profound discussion about the strategies for supporting "three red-line" management.

  • PDF

Economical Design of Water Level Monitoring Network for Agricultural Water Quantification (농업용수 정량화를 위한 경제적 수위계측망 설계)

  • Kim, Sun Joo;Kwon, Hyung Joong;Kim, Il Jung;Kim, Phil Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.19-28
    • /
    • 2016
  • This study was to design the optimal locations of the water level monitoring to quantify the agricultural water use in irrigation area supplied from an agricultural reservoir. In most of agricultural areas without TM/TC (Tele-Monitoring and Tele-Control) or monitoring network, irrigation water have been supplied on conventional experience and agricultural reservoir have been operated based on the operating simulation results by HOMWRS (Hydrological Operation Model for Water Resources System). Therefore, this study quantified the amount of agricultural water use in an irrigation area (Musu Reservoir, Jincheon-gun) by establishing water level monitoring network and analyzed the agricultural water saving effect. According to the evaluation of the economic values for water saving effect, the saving agricultural water of 1.7 million ton was analyzed to have economic values of 0.85 million won as water for living, and 1.78 million won as water for industrial use. It is identified to secure economic feasibility of the new water monitoring network by establishing one monitoring point in the entrance, irrigation area and endpoint through the economic analysis.

A Real Time Monitoring for Water Quality of River (수질자동모니터링시스템의 설치 현황과 전망)

  • Ryu, Jae-Kuen
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Water quality is monitored at 1,837 points which are streams and sources for water supply in Karea. The monitoring carry out the measurement of 16 parameters of pH, BOD, SS, DO and so on with once a month, and of other parameters such like heavy metal with once a quarter. But most of the monitoring is carried out uncontinuously, so it is very difficult to understand exactly the changes of water quality compared with continuous monitoring. Therefore, real time monitoring system was equipped with basic parameters such as pH, temperature, DO, turbidity and electric conductivity at 25 major sources of water supply after installation of Noryangjin and Dukdo in 1974. But the systems have some problems which cannot be considered the sampling sites to represent for water quality of stream of lake, and can be caused a change of water quality by long distance from analyzer to intake pipe. Therefore, it has carefully to evaluate selection of sample sites for real time monitoring system. Also, problems on the area has been to identify which parameters are best suited to monitoring stream of lake water and the differences, of analyzing results compared with manual analyzing. This paper presents some approaches to handle such problems, namely selection of sampling site and measurable parameters, to connect with bio-monitoring system solving a Limitation of measurable parameters, The bio-monitoring system of an early alarm that is desirable to perceive a toxic material inflow into stream can be applied to continuos water quality monitoring system effectively. Also, this paper presents to build a on line system transmitting immediately from a mobile analyzer house or container to main monitoring center the results of analyzer by a telemeter.

Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm (엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.

Impacts of Uncertainty of Water Quality Data on Wate Quality Management (수질자료의 불확실성이 수질관리에 미치는 영향)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.427-430
    • /
    • 2006
  • Uncertainty is one of the key issues of the water quality management. Uncertainty occurs in the course of all water quality management stages including monitoring, modeling, and regulation enforcement. To reduce uncertainties of water quality monitoring, manualized monitoring methodology should be developed and implemented. In addition, long-term monitoring is essential for acquiring reliable water quality data which enables best water quality management. For the water quality management in the watershed scale, fate of pollutant including its generation, transport and impact should be considered while regarding each stage of water quality management as an unit process. Uncertainties of each stage of water quality management should be treated properly to prevent error propagation transferred to the next stage of management for successful achievement of water quality conservation.

Monitoring and Analysis of Nutrients in Sediments in the Riverbed (하천 퇴적물의 영양염류 모니터링)

  • Kim, Geonha;Jung, Woohyeok;Lee, Junbae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.838-845
    • /
    • 2006
  • Characterization of sediment in the riverbed is of importance for effective water quality management, yet have not been monitored sufficiently. This paper reports monitoring results of nutrient concentrations of sediments. Surface waters and sediments were sampled four times during rainy season at five monitoring points. Organics of overlying water were increased after high flow condition followed by decreasing tendencies. Soluble phosphorus fraction among total phosphorus was increased after high flow condition while total phosphorus was in decreasing tendencies. Monitoring result suggested that more extended monitoring scheme for flow rate, scouring velocity, and suspended material is required for analyzing relationship between water quality and sediment.

The Study on the Integrated Monitoring of Water Quantity and Quality Data (수량 및 수질관측 통합연계 운영 연구)

  • Yi, Jae-Eung;Kim, Mun-Mo;Park, Sung-Je
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.115-123
    • /
    • 2009
  • Integrated information to water quantity and quality is essential for planning water resources management as well as operating water-related infrastructures. Because data collection process including monitoring and maintenance is separated in different governmental agencies in Korea, integrating quantity and quality may provide effective and better management implementation. In this study, a number of suggestions regarding integration of water monitoring were concluded in terms of technological, legal and institutional implications. First, it is necessary to discuss national water monitoring plan, national water information management plan, agreement of standard terms of monitoring between ministries, and to revise the law(river law and water quality management law). Present stations for water monitoring should be used for both of quantity and quality monitoring. If station is newly installed or relocated, it is better that one single agency maintain monitoring frequency and data management as well. In addition, a monitoring protocol need to be agreed by each of parties. In order to develop integrated monitoring system, quality assurance of the collected data should be properly maintained. Since many purposes haven been concerned using of data analysis and assessment so far, it may not be easy to integrate water quantity and quality monitoring in a short period. However, the alternatives including enhancing institutional regulations and programs, advanced technology may promote an efficient integrated water monitoring.

Water Quality Similarity Evaluation in Geum River Using Water Quality Monitoring Network Data (물환경측정망 자료를 활용한 금강수계 수질 유사도 평가)

  • Kim, Jeehyun;Chae, Minhee;Yoon, Johee;Seok, Kwangseol
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.75-88
    • /
    • 2021
  • Six locations in the automated monitoring network at the Geum River Basin were selected forthis study. The water quality characteristics at two of the locations in the water quality monitoring network that were identical, or nearby, were examined, and their correlations were evaluated through statistical analysis. The results of the water quality analysis were converted to the water quality index and expressed in grades for comparison. For the data necessary for the study, public data from four years, from 2016-2019 were used and the evaluation parameters were water temperature, pH, EC, DO, TOC, TN, and TP. Results of the analysis showed that the water quality concentrations measured in the automated monitoring network and the water quality monitoring network differed in some measured values, but they tended to register variation in a specified ratio in most of the locations in the network. The analysis of the correlations of the parameters between the two monitoring networks found that water temperature, EC, and DO showed high correlations between the two monitoring networks. The TOC, TN, and TP showed high correlations, with a 0.7 or higher (correlation coefficient r), with the exception of some of the monitoring networks, although their correlations were lower than those of the basic parameters. The water quality index analysis showed that the water quality index values of the automated monitoring network and the water quality monitoring network were similar. The water quality index decreased and the pollution degree increased in the downstream direction, in both networks.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Water Quality Analysis in Nakdong River Tributaries Using 2012-2016 Monitoring Data (2012-2016년 모니터링 자료를 이용한 낙동강 지류·지천 수질 특성 분석)

  • Son, Younggyu;Na, Seungmin;Im, Tae Hyo;Kim, Sang-hun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.680-688
    • /
    • 2017
  • Water quality monitoring for flow rates and BOD/COD/T-N/T-P/SS/TOC concentrations has been conducted in Nakdong river tributaries since 2011. In this study concentrations and loading rates of BOD, T-P, and TOC were analyzed to evaluate water quality monitoring stations using accumulated data at 206 tributary monitoring stations in Nakdong river 2012 ~ 2016. Average concentration ranges for 206 monitoring stations were 0.3 ~ 6.4 mg/L, 0.025 ~ 1.562 mg/L, and 0.6 ~ 10.7 mg/L for BOD, T-P, and TOC, respectively. Additionally, average loading rate ranges were 0.96 ~ 46,040 kg/d, 0.087 ~ 1,834 kg/d, and 1.51 ~ 80,425 kg/d for BOD, T-P, and TOC, respectively. Average concentration for BOD, T-P, and TOC at each monitoring station was evaluated using ambient water quality standards of rivers and water quality regulation level for medium-sized management areas. Average loading rate and specific loading rate (loading rate/drainage basin area) for BOD, T-P, and TOC at each monitoring station was considered to evaluate monitoring stations using suggested classification (BOD, TOC: -1, 1 ~ 10, 10 ~ 100, 100 ~ 1,000, and 1,000 ~ kg/d; T-P: -0.1. 0.1 ~ 1, 1 ~ 10, 10 ~ 100, and 100 ~ kg/d) Using results of this study, various water quality status maps were provided, and three evaluation methods were suggested to determine priority monitoring stations in Nakdong river for rational water quality control and tributaries basin management.