• Title/Summary/Keyword: water microcosm

Search Result 34, Processing Time 0.026 seconds

Microcosm Studies of Nanomaterials in Water and Soil Ecosystems (수생태 및 토양생태계에서 나노물질의 마이크로코즘 연구)

  • Yoon, Sung-Ji;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2012
  • The current growth of nano-industries has resulted in released nanoparticles entering into water and soil ecosystems via various direct or indirect routes. Physicochemical properties of nanoparticles differ from bulk materials, and nanomaterials influence the fates of nanoparticles and the interactions of living or non-living things in the environment. Microcosm analysis is a research methodology for revealing natural phenomena by mimicking part of an ecosystem under controlled conditions. Microcosm study allows for the integrated analysis of toxic effects and fates of nanoparticles in the ecosystem. Ecotoxicity studies of nanomaterials are steadily increasing, and microcosm studies of nanomaterials are currently beginning to surface. In this study, microcosm studies of nanomaterials in water and soil ecosystems were extensively investigated based on SCI(E) papers. We found that the microcosm studies have been reported in 12 instances, and mesocosm studies have been reported in only once until now. Advanced research was mostly evaluated at the microorganism level. But integrated analysis of nanotoxicity is required to research the interactions based of various species. Thus, our studies analysed the trend of microcosm studies on nanomaterials in water and soil ecosystems and suggested future directions of microcosm research of nanomaterials.

Algicidal Effect of Immobilized Bacteria against S. hantzschii in Microcosm (살조세균 Pseudomonas fluorescens HYK0210-SK09의 두 가지 담체 포집능과 이를 이용한 microcosm에서 Stephanodiscus hantzschii (Bacillariophyceae)의 살조능 연구)

  • Jung, Seung-Won;Kim, Young-Ok;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • To assess the algicidal effect of a bacterium, Pseudomonas fluorescens HYK0210-SK09 (SK09), attached to activated carbon polyvinyl alcohol (ACPA) and cellulose sponge (CS) carriers against Stephanodiscus hantzschii, the present study was carried out in an indoor-microcosm. As comparing immobilization effects of two carriers, the ACPA carrier allowed for higher packing cell density of SK09 compared to the CS carrier. In the microcosm, immobilized SK09 cells were applied to control S. hantzschii blooms. Immobilized SK09 cells exhibited a species-specific activity towards the diatom, showing an algicidal effect up to 72% attached by ACPA carriers and to 51% attached by CS carriers. In particular, a level of conductivity treated with ACPA carriers was decreased than that of CS carriers. The present study clearly demonstrates that ACPA-immobilized SK09 cells could effectively control S. hantzschii blooms and improve water quality in the microcosm ecosystem.

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

The effect of water turnover time on decomposition of wild rice (Zizania latifolia) and nutrient dynamics in an artificial wetland system

  • Lee, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The effect of different turnover time of water on the decomposition of emergent macrophyte litter (Zizania latifolia Griseb.) was investigated using a microcosm experiment. Microcosm treatment represented different turnover time of water; 1, 2, 4 and 8 weeks. The litterbags from each treatment were retrieved every 2 weeks until the 8th week and the water simultaneously sampled with the litterbag. The dry weight and the content of major cations in the litter, and the content of available N, P, and major cations in the water were analyzed. Dry weight loss after 8 weeks indicated the lower decay rates under the condition of short turnover time of water. Major cations from the litter and the water showed that the leached amounts of K and Mg from the litter were highest in the 2nd week and dramatically decreased from the 4th week. The dynamics of available nitrogen and phosphorus in the water showed that as the water turnover time was getting longer, the amounts of available nitrogen and phosphorus remained higher. These results suggest that wetlands with longer turnover time of water could maintain the increased nitrogen and phosphorus and no outflow of the nutrients could cause eutrophication problem.

A Study on the Toxicity Assessment of Plating Wastewater using Aquatic Microcosm (수계 Microcosm을 이용한 도금폐수의 독성평가)

  • 위성욱;도삼유평;조경;나명석;이종빈
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.256-262
    • /
    • 2002
  • This research investigated experimentally on the population growth in the aquatic microcosm with the wastewater of plating factory. The purpose of this study was to evaluate the effect of culture conditions of the characteristic growth pattern of the examined species. Population of the system is consists of three organisms; Chlorella vulgaris as a producer, Cyclidium glaucoma as a consumer and Pseudomonas putida as a decomposer. The different growth patterns of each population are followed by surfactant type; Especially C. glaucoma was sensitive, Ch. uvlgaris was maintained population size stably even at high level of surfactant and p. putida was not significantly affected. After treatment of waste water from plating factory, it began to be affected at 1.0% solution treatment to Ch. vulgaris which the cell number was decreased prominently after 2 days, and C. glaucoma was disappeared at 2.5% solution treatment. P. putida was showed increasing pattern according to treatment concentration, at 2.5% solution and population size grew double. The result from current microcosm study indicates that this model system can be applied to environmental assessment method for various pollutants.

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

Fate and Bioaccumulation of Zinc Oxide Nanoparticles in a Microcosm (산화아연 나노물질의 미소생태계 내 거동 및 생물축적)

  • Kim, Eunjeong;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa Kyung;Yoo, Sun Kyoung;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Park, Sun-Young;Eom, Ig-chun;Kim, Pilje
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Objectives: Zinc oxide nanoparticles (ZnO NPs) are widely used in various commercial products, but they are exposed to the environment and can induce toxicity. In this study, we investigated the environmental fate and bioaccumulation of ZnO NPs in a microcosm. Methods: The microcosm was composed of water, soil (Lufa Soil 2.2) and organisms (Oryzias latipes, Neocaridina denticulata, Semisulcospira libertina). Point five and 5 mg/L of ZnO NPs were exposed in the microcosm for 14 days. Total Zn concentrations were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and intracellular NPs were observed using Transmission Electron Microscopy (TEM). Results: In the initial stages of exposure, the Zn concentrations in water increased in all exposure groups and then decreased, while the Zn concentration in soil increased after three hours for the 5 mg/L solution. Zn concentrations also showed increasing trends in N. denticulata and S. libertina at 0.5 and 5 mg/L, and in O. latipes at 5 mg/L. Accumulation of NPs was found in the livers of O. latipes and hepatopancreas of N. denticulata and S. libertina. Conclusions: In the early stages of exposure, ZnO NPs remained in the water, and then were transported to the soil and test species. Unlike other species, total Zn concentrations in N. denticulata and S. libertina increased for both 0.5 mg/L and 5 mg/L. Therefore, ZnO NPs were more easily accumulated in zoobenthos than in fish.

Influence of AVS on the Partitioning of Bioavailable Zn to Various Binding Phases in Sediments

  • Song, Ki-Hoon;Vincent T. Breslin
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.243-250
    • /
    • 2004
  • Sediment microcosm experiments were conducted for 14 and 28 days using Zn spiked sediment to examine the changing distribution of bioavailab1e sediment-bound Zn at different SEM (simultaneously extracted metal)-Zn/ AVS (acid volatile sulfide) mole ratios as a function of time and amphipod density. In surficial sediments (0-1cm), AVS concentrations significantly decreased due to bioturbation and oxidation, while SEM-Zn concentrations remained unchanged. As a result, SEM-Zn/AVS ratios in the surface sediment were greater one although the ratios were designed as less than one initially. With increasing SEM-Zn/AVS ratios in surficial sediments, concentrations of potentially bioavailable $MgCl_2$extractable-Zn, NaOAc extractable-Zn and pore water-Zn significantly increased, while concentrations of SEM-Zn were not significantly varied. Results suggested that as AVS concentrations decreased, AVS bound Zn was partitioned to other sediment fractions (i.e. $MgCl_2$ and NaOAc extractable) and the pore water, resulting in changes in Zn bioavailability in surficial sediments. Concentrations of AVS, SEM-Zn and pore water-Zn remained unchanged in the deeper layers (>1 cm) of the sediment.

Construction of a Simple Bi-trophic Microcosm System Using Standard Test Species (Pseudokirchneriella subcapitata and Daphnia magna) for Testing Chemical Toxicities (화학물질에 대한 독성시험 bi-trophic microcosm 구축에 있어 표준시험생물 녹조류 (Pseudokirchneriella subcapitata)와 물벼룩 (Daphnia magna)의 개체군 특성 연구)

  • Sakamoto, Masaki;Mano, Hiroyuki;Hanazato, Takayuki;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • Aquatic ecosystems are receiving various harmful effects due to anthropogenic chemical pollutions. To protect wildlife, risk assessments of the chemicals are conducted using reference indexes of toxicity estimated by species-level laboratory tests and/or micro-/mesocosm community-level studies. However, the existing micro-/mesocosm communities are structurally too complicated, and it is also difficult to compare the experimental results directly with those from species-level tests. Here, we developed a procedure of a simple bi-trophic microcosm experiment which contains the common species (a green algae, Pseudokirchneriella subcapitata and a cladoceran, Daphnia magna) for testing chemical toxicities. For the proper operation of bitrophic microcosm experiment, the minimum required concentration of primary producer (P. subcapitata) is $5{\times}10^5cells\;mL^{-1}$. The microcosm system showed higher stability when the initially introduced D. magna population was composed of neonates (<24-h old) than adults and those mixture. This simple microcosm system would be an applicable tool to estimate the disturbing impacts of pollutants on plant-herbivore interactions, and linking the species- and population-/community level risk assessments in the future studies.

Electron Donor Determination and Comparisons of Reaction Rates for Bioremediation of Nitrate Contaminated Groundwater (질산성 질소로 오염된 지하수의 생물복원을 위한 적정 전자공여체의 결정 및 반응속도 비교 연구)

  • Oa, Seongwook;Lee, Yoonhee;Kim, Geonha;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.630-636
    • /
    • 2005
  • Groundwater contamination by nitrate exceeding water quality criteria (10 mg $NO_3{^-}-N/L$) occurs frequently. Fumarate, acetate, formate, lactate, propionate, ethanol, methane and hydrogen gas were evaluated for their nitrate removal efficiencies and removal rates for in situ bioremediation of nitrate contaminated groundwater. Denitrification rate for each substrate was in the order of: fumarate > hydrogen > formate/lactate > ethanol > propionate > methanol > acetate. Microcosm studies were performed with fumarate and acetate. When fumarate was used as a substrate, nitrate was removed 100 percent with rate of 0.66 mmol/day while conversion rate from nitrate to nitrogen gas or another by-product was 87 percent. 42 mg of fumarate was needed to remove 30 mg $NO_3{^-}-N/L$. When using acetate as carbon source, 31 percent of nitrate was removed during initial adjustment period. Among removed fraction, however, 83 percent of nitrate removed by cell growth. Overall nitrate removal rate was 0.37 mmol/day. Acetate showed longer lag time in consumption compared to that of nitrate, which implying that acetate would be better carbon source compared to fumarate as more amount was utilized for nitrate removal than cell growth.