• 제목/요약/키워드: water environment

검색결과 13,287건 처리시간 0.035초

낙동강 남강 합류부 수위와 수질 패턴 및 추세 (Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data)

  • 양득석;임태효;이인정;정강영;김경훈;권헌각;유제철;안정민
    • 한국환경과학회지
    • /
    • 제27권2호
    • /
    • pp.63-74
    • /
    • 2018
  • As part of the Four Major Rivers Restoration Project, multifunctional weirs have been constructed in the rivers and operated for river-level management. As the weirs play a role in draining water from tributaries, the aim of this study was to determine the influence of the weirs on the water level of the Nam River, which is one of the Nakdong River's tributaries. Self-organizing maps (SOMs) and a locally weighted scatterplot smoothing (LOWESS) technique were applied to analyze the patterns and trends of water level and quality of the Nakdong River, considering the operation of the Changnyeong-Haman weir, which is located where the Nam River flows into the Nakdong River. The software program HEC-RAS was used to find the boundary points where the water is well drained. Per the study results at the monitoring points ranging between the junction of the two rivers and 17.5 km upstream toward the Nam River, the multifunctional weir influenced the water level at the Geoyrong and Daesan observation stations on the Nam River and the water quality based on automatic monitoring at the Chilseo station on the Nakdong River was affected strongly by the Nakdong River and partly by the Nam River.

건설사업장의 수질관리 기술 적용사례 비교분석 (Comparative Analysis of Wastewater Management Technologies for Construction Sites)

  • 이종찬;구자건
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.157-162
    • /
    • 2013
  • To deal with the water pollution arising from the construction site, this study raises the issues of management and laws and it suggest the efficient way to reduce water pollution by through the case studies. In order to study, seven cases were selected from "Construction Environmental Management Best Practice Competition" co - sponsored by Construction Association of Korea and Construction Environment Association. As a study result, there are problems that depending on the characteristic of the construction site environment simple alone settling facilities can not handle muddy and dirty water generated by the construction site. However, when the construction site applied improved water pollution control facilities with reflecting the characteristic of muddy and dirty water. The problem can be solved moreover it can achieve exceeded emission standard. Therefore new regulations and management with water pollution control facilities considering characteristic of environment is needed to cope with water pollution arising from the construction site.

생활계 오염원의 유기물 및 암모니아성 질소 배출특성 평가 (Characteristics of Organics and Ammonia Nitrogen Discharged by Pollution Source from Human Living)

  • 한송희;김요용;성연국;박익범;조덕희;남우경;김창규;오조교
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.377-386
    • /
    • 2015
  • The purpose of this research was to suggest the water quality improvement in streams by evaluating the distribution characteristics of organics and ammonia nitrogen discharged by pollution sources from human living. The public sewage treatment plants'(PSTPs) effluents and the waters from streams in Gyeonggi-do were sampled and analyzed. Nitrogenous oxygen demand (NOD) was measured for the stream waters as well as the PSTPs effluents, and the correlations of NOD and $NH_3$-N, $NH_3$-N and water temperature in the PSTPs effluents were confirmed. In the case of the stream waters, the ratios of NOD to BOD and $NH_3$-N increased in the downstream sites after discharging the PSTPs effluents. As a result of statistical analysis of $NH_3$-N concentrations for the national water quality monitoring streams in Gyeonggi-do, $NH_3$-N showed the non-normal distribution which were biased to the left, but showed the considerable level because of higher coefficient of variation. Therefore, it is required to establish the water quality standard for the $NH_3$-N as a new parameter for judging the quality of the streams. In addition, inducing complete nitrification and introducing a logical standard setting system are needed to improve the water quality of streams by identifying distribution of the nitrogen components from PSTPs effluents.

표층수를 방류하는 저수지(용담호)에서 몬순 탁수환경의 공간적 해석 (Spatial Interpretation of Monsoon Turbid-water Environment in a Reservoir (Yongdam) Discharging Surface Water, Korea)

  • 신재기;허진;이흥수;박재충;황순진
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.933-942
    • /
    • 2006
  • In this study, temperature, turbidity, suspended paniculate matter (SPM) distribution and mineral characteristics were investigated to explain spatial distribution of the turbid-water environment of Yongdam reservoir in July, 2005. Six stations were selected along a longitudinal axis of the reservoir and sampling was conducted in four depths of each station. Water temperature was showed the typical stratified structure by the effects of irradiance and inflow. Content of inorganic matter in suspended particles increased with the concentration of suspended particulate matter (SPM) due to the reduction of ash-free dry matter (AFDM). Turbidity ranged from 0.6 to 95.1 NTU and the maximum turbidity value of each station sharply increased toward downstream from upstream. The high turbidity layers were located at the depth between 12~16 m. Particle size ranged from 0.435 to $482.9{\mu}m$. day and silt-sized particles corresponded 91.9~98.9% and 1.1~8.0% in total numbers of SPM, respectively. Turbidity showed high correlations with clay (r=0.763, p<0.05) and silt content (r=0.870, p<0.05).Inorganic matter content (r=0.960, p<0.01) was more correlated with turbidity than organic matter (r=0.823, p<0.05). Mineral characterization using x-ray diffraction and electron probe microanalyzer demonstrated that the major minerals contained in the SPM were kaolinite, illite, vermiculite and smectite. As results of this study, surface water discharge as well as small size of the SPM were suggested as long-term interfering factors in settling down the turbid water in the reservoir.

주거 외부 수공간 도입에 따른 실내 온열 환경 변화 분석 (Analyzing the Change of Indoor Thermal Environment with the Introduction of the Water Space in Exterior Housing)

  • 오상목;오세규;원현성
    • 한국주거학회논문집
    • /
    • 제21권2호
    • /
    • pp.41-48
    • /
    • 2010
  • This study shows how the water space outside the housing impacts the indoor thermal environment. CFD simulation was used for this experiment to analyze the interior environment focusing on the effect of temperature control and the thermal comfort. A shape of perfect square, which creates the very basic space formation, was used and the simulation was processed looking at the size, distance, and the location of the water space. The results of the experiment are as follows. Firstly, introducing a water space with the same floor area size of the simulation model decreased the indoor temperature by 1 Celsius (3.72%). It was determined the interior environment was considered as a comfort zone when the water space was greater than 70% of the floor area. Secondly, there was not much influence to the level of thermal comfort of the interior environment when the distance to the water space from the housing was greater than 2 meters. Lastly, interpreting the location of water space, the effect of controlling the total areas' temperature was the greatest following with the surrounding of the formation. There barely was any change to the temperature considering the side and the rear of the area.

상수도관로중 주철관종의 잔존수명 평가에 관한 연구 (Residual Life Assessment on Cast Iron Pipes of Water Distribution System)

  • 이현동;배철호;홍성호;황재운;곽필재
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.206-214
    • /
    • 2004
  • Residual wall thicknesses, corrosion rates, and residual life of thirty four samples of cast iron pipes(CIPs) and ductile cast iron pipes(DCIPs) collected from water mains of B city were studied to estimate their remaining service life or optimum time of rehabilitation. The internal maximum corrosion depths of samples measured using a dial gauge after shot blasting were twice higher than the external in most cases. Therefore corrosion of water pipes was much more affected by internal water quality than soil. Residual wall thicknesses of DCIPs were higher than those of CIPs. That reason was thought to be that DCIPs have been protected from internal corrosion by lining cement mortar. Residual life calculated by maximum corrosion rate was ranged up to 44 years with 12.40 years average. Since most CIPs were much deteriorated, rehabilitation plan should be established soon in B city. Residual life of DCIP was 33.52 years average. When cement mortar lining is used up by neutralization of DCIPs. DCIP also should be rehabilitated.

판별분석을 통한 농촌유역 소하천의 수질등급모형(WQLM) 개발 및 적용 (Development and Application of Water Quality Level Model (WQLM) for the Small Streams of Rural Watersheds with Discriminant Analysis)

  • 김진호;최철만;류종수;정구복;신중두;한국헌;이정택;권순국
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.260-265
    • /
    • 2007
  • This study was carried out to complement water quality standards and to establish new concept for water quality standards reflecting current state of water quality in small streams. By this purpose, discriminant analysis was performed and Water Quality Level Model (WQLM) was developed using the data such as EC, BOD, $COD_{Mn}$, SS, T-N, T-P, $NH_3-N$ in 224 agricultural streams. To give water quality level for water quality parameters, it divided into 20% respectively in the order of excellent water quality. On the basis of the lowest water quality level, water quality level of small streams is granted. As a result of it, number of stream corresponding to Level I was no, Level II was 2 streams, Level III was 22 streams, Level IV was 70 streams, and Level V was 130 streams. Average of water quality in each level was the highest in Level V. EC, SS, and T-N of 7 parameters were selected in variance concerned water quality level. By standardized canonical discriminant function coefficient, EC of three variances was the highest in 0.625 at the discriminant power. The next was T-N (0.509), SS (0.414). By discriminant function for water quality level, Level II was equal to $-2.973+19.376{\times}(EC)+0.647{\times}(T-N)+0.009{\times}(SS)$, Level III was equal to $-3.288+19.190{\times}(EC)+0.733{\times}(T-N)+0.041{\times}(SS)$, Level IV was equal to $-4.462+27.097{\times}(EC)+0.792{\times}(T-N)+0.053{\times}(SS)$, and Level V was equal to $-9.117+40.040{\times}(EC)+1.305{\times}(T-N)+0.111{\times}(SS)$. As a result of test at real agricultural watershed of Jeongan and Euidang in Gongju city, the fitness of WQLM was high to 88.78%. But, to get accomplished water quality assessment more exactly in agricultural streams, we had to concentrate and get vast data, and WQLM was modified and complemented continually.

A study on the algal growth-related water quality of the Dongbok laka

  • Kim, Jong-Min;Kim, Hyun-Ku;Huh, Yu-Jeong;Jeong, Jong-Bum
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2004년도 학술대회
    • /
    • pp.25-25
    • /
    • 2004
  • We studied algal growth-related water quality of the Dongbok lake which is the drinking water reservoir for the Gwangju municipality. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 13.7 mg/I in the surface layer. Highly turbid surface water with 46.8 mg/I of SS was also caused by Perdinium bloom. Peridinium bloom decisively eliminated cyanobacterial growth in the lake, otherwise cyanobacterial bloom resulted. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated in terms of water quality. This paper deals with some details of water quality changes with algal growth in the Dongbok lake past two years.

  • PDF

오염부하지속곡선(LDC)을 이용한 수질오염총량관리 단위유역 목표수질 달성여부 평가방법 (Methodology for the Identification of Impaired Waters Using LDC for the Management of Total Maximum Daily Loads)

  • 박준대;오승영
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.693-703
    • /
    • 2012
  • Load Duration Curve(LDC) is a useful tool for analyzing water quality characteristics under various stream flow conditions. This study investigated the methods to identify impaired waterbodies in the assessment of water quality goal attainment by using LDC for the management of Total Maximum Daily Loads (TMDLs). Three methods were proposed. Non-typical regime exclusion method is a method to exclude water quality observations in the non-typical extreme flow conditions in order to minimize the influence of non-ordinary water quality. Flow regime weighted average method is a method to calculate weighted mean water quality instead of arithmetic mean in order to consider water characteristics properly on stream flow regime in addition to the effect of Non-typical regime exclusion method. Load exceeded interval comparison method is a method to compare the intervals between the attained and non-attained load duration periods on the LDC. The assessment of water quality goal attainment can be performed more reasonably and precisely considering water quality variations on stream flow conditions by applying these proposed methods.