Development and Application of Water Quality Level Model (WQLM) for the Small Streams of Rural Watersheds with Discriminant Analysis

판별분석을 통한 농촌유역 소하천의 수질등급모형(WQLM) 개발 및 적용

  • Kim, Jin-Ho (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Choi, Chul-Mann (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Ryu, Jong-Soo (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Jung, Goo-Bok (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Shin, Joung-Du (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Han, Kuk-Heon (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Lee, Jung-Taek (Division of Environment and Ecology, National Institute of Agricultural Science & Technology, Rural Development Administration) ;
  • Kwun, Soon-Kuk (Department of Landscape Architecture and Rural System Engineering, Seoul National University)
  • 김진호 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 최철만 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 류종수 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 정구복 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 신중두 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 한국헌 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이정택 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 권순국 (서울대학교 조경.지역시스템공학부)
  • Received : 2007.01.25
  • Accepted : 2007.02.28
  • Published : 2007.03.30

Abstract

This study was carried out to complement water quality standards and to establish new concept for water quality standards reflecting current state of water quality in small streams. By this purpose, discriminant analysis was performed and Water Quality Level Model (WQLM) was developed using the data such as EC, BOD, $COD_{Mn}$, SS, T-N, T-P, $NH_3-N$ in 224 agricultural streams. To give water quality level for water quality parameters, it divided into 20% respectively in the order of excellent water quality. On the basis of the lowest water quality level, water quality level of small streams is granted. As a result of it, number of stream corresponding to Level I was no, Level II was 2 streams, Level III was 22 streams, Level IV was 70 streams, and Level V was 130 streams. Average of water quality in each level was the highest in Level V. EC, SS, and T-N of 7 parameters were selected in variance concerned water quality level. By standardized canonical discriminant function coefficient, EC of three variances was the highest in 0.625 at the discriminant power. The next was T-N (0.509), SS (0.414). By discriminant function for water quality level, Level II was equal to $-2.973+19.376{\times}(EC)+0.647{\times}(T-N)+0.009{\times}(SS)$, Level III was equal to $-3.288+19.190{\times}(EC)+0.733{\times}(T-N)+0.041{\times}(SS)$, Level IV was equal to $-4.462+27.097{\times}(EC)+0.792{\times}(T-N)+0.053{\times}(SS)$, and Level V was equal to $-9.117+40.040{\times}(EC)+1.305{\times}(T-N)+0.111{\times}(SS)$. As a result of test at real agricultural watershed of Jeongan and Euidang in Gongju city, the fitness of WQLM was high to 88.78%. But, to get accomplished water quality assessment more exactly in agricultural streams, we had to concentrate and get vast data, and WQLM was modified and complemented continually.

Keywords

References

  1. 고지연, 이재생, 김춘송, 정기열, 최영대, 윤을수, 빅성태, 강항원. 김복진, 수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질 평가, 한국환경농학회지, 25(2), pp. 138-146 (2006) https://doi.org/10.5338/KJEA.2006.25.2.138
  2. 김종구, 통계분석 기법을 이용한 금강수계의 수질평가, 한국환경과학회지, 11(12), pp. 1281-1289 (2002)
  3. 농업과학기술원, 농업환경변동조사사업, 농촌진흥청. 수원, pp. 1-361 (2001)
  4. 농업과학기술원, 농업환경변동조사사업, 농촌진흥청, 수원, pp. 1-368 (2003)
  5. 농업과학기술원, 농업환경변동조사사업, 농촌진흥칭, 수원, pp. 1-334 (2005)
  6. 농업과학기술원, 농업용수수질분석 이론과 실무, 농촌진흥청, 수원, pp. 19-22 (2006)
  7. 류재근, 수질자동모니터링에 의한 시스템의 설치 현황과 전망, 한국물환경학회지, 20(1), pp, 1-11 (2004)
  8. 박성천, 오창열, 진영훈, 김동수, 섬진강 유역 농촌지역의 비점오염원 배출특성에 관한 연구, 한국환경과학회지, 14(11), pp. 1057-1062 (2005)
  9. 박영규, 이철희, 김인환, 다변량분석에 의한 낙동강 수질의 평가, 영남대학교 환경연구소 논문집, 7(1), pp. 151-165 (1988)
  10. 신용철, 류장원, 최예환, 임경재, 최중대, 농업소하천 유역의 기저유출에 의한 오염부하 특성, 한국물환경학회지, 22(2), pp. 244-249 (2006)
  11. 엄미정, 최정식, 한수곤, 김갑철, 문영훈, 동진강 수계 농업 용수 수질평가, 한국환경농학회지, 19(2), pp. 110-115 (2000)
  12. 오영주, 강병화, 김병우, 김성필, 한빈수, 김진호, 나영은, 토지이용패턴에 따른 하천수질과 식생분포, 한국환경농학회지, 25(1), pp. 34-39 (2006) https://doi.org/10.5338/KJEA.2006.25.1.034
  13. 이문옥, 백상호, 판별함수에 의한 진해만 적조예측, 한국환경과학회지, 7(1), ,pp 8-19 (1998)
  14. 이종식, 정구복, 김진호, 윤순강, 김원일, 신중두, 만경강 및 동진강 수계의 BOD에 의한 수질 평가, 한국환경농학회지, 23(2), pp. 81-84 (2004)
  15. 임창수, 금강유역 14개 관측점의 수집자료를 이용한 수질의 다변량 분석, 한국환경과학회지, 8(3), pp. 331-336 (1999)
  16. 정중영, 최이규, SPSSWIN을 이용한 통계분석, 무역경영사, 서울, pp. 359-388 (1999)
  17. 최한규, 백효선, 허준영, 다변량 분석법을 이용한 소양강댐 상류 유역의 하천 수질 평가, 강원대학교 산업기술연구소 논문집, 22(A), pp. 201-210 (2002)
  18. 최형섭, 조인천, 변종환, 문병현, 허종수, 합천호 수질 및 영양 단계에 의한 평가, 한국환경농학회지, 22(1), pp. 1-6 (2003)
  19. Ayers, R. S. and Wcstcol, D. W., Water quality for agriculture, FAO Irrigation and Drainage Paper 29, FAO, Rome, pp. 1-97 (1976)
  20. Chung, J. B., Kim. B. J., Kim. J. K. and Kim, M. K., Water quality of streams in some agricultural areas of different agricultural practices along Nakdong river basin, Kor. J. Environ. Agri., 17, pp. 140-144 (1998)
  21. Liding, C. and Bojie. F., farm Ecosystem Management and Control of Nonpoint Source Pollution. Chinese J. Environ. Sci., 21. pp. 98-100 (2000)
  22. Linghe, Z.. and Shannon. M. C, Salinity effects on seedling growth and yield components of rice. Crop science, 40(4), pp. 996-1003 (2000) https://doi.org/10.2135/cropsci2000.404996x
  23. Munns, R. and Termaat, A., Whole-plant responses to salinity, Aust. J. Plant Physiol., 13, pp. 143-160 (1986) https://doi.org/10.1071/PP9860143
  24. Oh. Y. C, Lee, N. D. and Kim, J. G.. The Evaluation of Water Quality in the Mankyung River using Multivariate Analysis, J. Korean Env. Sci., 13(3), pp. 233-244 (2004)
  25. Park, S. W., Yoo, S. H. and Kang. M. S.. Non point source pollution loading from land uses on small watersheds. J. Kor. Soc. Agri. Eng, 39, pp. 127-135 (1997)
  26. Peterson, J. M. and Boisvert, R. N., Control of Nonpoint Source Pollution through Voluntary Incentive-Based Policies: An Application to Nitrate Contamination in New York, Agricultural and Resource Economics Review, 30, pp. 127-138 (2001) https://doi.org/10.1017/S1068280500001076