• Title/Summary/Keyword: water ecosystem

Search Result 1,470, Processing Time 0.035 seconds

Issue Difference of Ecosystem Service Demand and Supply through Text Mining Analysis: Case Study of Shiheung using Complaints and Urban Planning Materials (텍스트 마이닝 분석을 통한 생태계서비스 수요-공급의 이슈 차이분석 - 시흥시 민원과 도시계획 자료를 활용하여 -)

  • Lee, Jae-hyuck;Park, Hong-jun;Kim, Il-kwon;Kwon, Hyuk-soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.3
    • /
    • pp.63-71
    • /
    • 2018
  • The comparison of demand and supply is needed for efficient ecosystem services planning. However, the gap between them cannot be analyzed as existing studies mainly dealt with only the supply of ecosystem services. This study compares the demand and supply of ecosystem services in Shiheung using environmental complaints and urban planning by semantic network analysis. As a result, 'air' and 'water' quality are magnified in demand, 'energy' and 'water' are crucial in supply. This result presents that citizen ask for the improvement of air quality in regulation services, although local government has plans for energy support in provisioning services. Periodic ecosystem services demand and supply monitoring will be the base of effective ecosystem services planning, which reduce insufficiency and surplus.

Recovery of Ecosystem Service Functions through Ecological Restoration Practice: A Case Study of Coal Mine Spoils, Samcheok, Central Eastern Korea (훼손된 생태계의 복원을 통한 생태계 서비스의 회복: 채탄쓰레기 매립지 복원지의 사례)

  • Oh, Woo Seok;Lee, Chang Seok
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Ecological restoration is regarded as a major strategy for preventing biodiversity loss and thereby enhancing ecosystem service. This study was performed to evaluate ecosystem service value that the restored ecosystem provides. Ecosystem service was evaluated for provisioning and regulating services. The former service was evaluated by comparing similarities in a viewpoint of floristic composition to the reference site between the restored and the unrestored sites. Species composition of the restored site was found to be more similar to the reference site than that of the unrestored site and thereby restoration practice contributed for enhancing the provisioning service. Regulating service was evaluated based on microclimate control, soil amelioration, and improvement of water holding capacity. The value of ecosystem services in terms of microclimate control, soil amelioration, and improvement of water holding capacity was higher in the restored site than in the unrestored site. In consequence, ecological restoration of coal mine spoils contributed for enhancing the ecosystem service value of the corresponding site and thereby is rewarding the cost invested for restoration.

Estimation of Ability for Water Quality Purification Using Ecological Modeling on Tidal Flat (생태계 모델을 이용한 갯벌의 수질정화능력 산정)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.42-49
    • /
    • 2007
  • It has been known that shallow-water regions, such as tidal flats, sea grass and sea weed beds have water purification capability, and they also serve as nursery grounds for many fishes. On the other hand, tidal flat areas are economically attractive sites for reclamation, to be used for developing industries. When developing shallow-water areas, we have to propose a plan to mitigate the environmental impact associated with such a development plan. However, it is difficult to estimate the affects on the ecosystem and water purification, and the literature related to this matter is insufficient. In order to evaluate the ability of coastal tidal flat and to predict the future changes, it is necessary to develop a reliable prediction technique and construction of data by using a field investigation. In this study, we carried out a numerical model test for the tidal flat ecosystem, using the pelagic system and the benthic system, simultaneously, in order to show a change in the tidal flat ecosystem. The flow of nitrogen, phosphorus and carbon has been identified as a primary consideration of marine ecosystem components, and the capability of water purification and the change of the tidal flat were predicted using this flow. In order to make a more reliable prediction, a field investigation to determine tide, current and creatures of the object coastal area has been done. The purification capability of this shallow-water region is estimated from the model results. According to the results of experiments, the tidal flat has a capability of water purification (Sink) of 11mgN/m2/day, but the other area has a load (Source) of 20mgN/m2/day. As a result, we could confirm that the tidal flat of an object coastal area plays an important role in water purification.

Study of Formation and Development of Oxygen Deficient Water Mass, Using Ecosystem Model in Jinhae, Masan Bay (생태계 모델을 이용한 진해·마산만에서의 빈산소수괴의 형성 및 발달에 관한 연구)

  • Kim, Yeon-Joong;Kim, Myoung-Kyu;Yoon, Jung-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.41-50
    • /
    • 2010
  • This study established a 3D ecosystem model composed of stratification considering the topographic heat accumulation effect and river outflow, and then applied this model to Jinhae, Masan Bay. Specifically, it reenacted the formation and developmental process of ODW according to the stratification by calculating the kinematic eddy viscosity and eddy diffusion coefficient of the stratification model. The results were used as input data for the ecosystem model and compared with DO, COD, I-N, and I-P, which is the standard index of ocean water quality. As a result, it was determined that COD and T-N are third grade and T-P is second grade standards for a natural environment.

Evaluation of Korean distant water tuna fisheries in the Western and Central Pacific Ocean using ecosystem-based fishery risk assessment (중서부태평양해역 다랑어어업의 생태계기반 어업 위험도 평가)

  • KWON, Youjung;LIM, Jung-hyun;LEE, Mi Kyung;LEE, Sung Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.299-315
    • /
    • 2020
  • Tuna fisheries were applied to an integrated ecosystem-based fishery risk assessment method using indexes of target species status, inhabited species in a target ecosystem, habitat quality and socio-economic benefit of affected fisheries. This study suggested more effective and efficient management measures to break away from traditional management methods, such as limitation of catch and fishing effort. The results presented that the objective risk index (ORIS) on sustainability of bigeye and yellowfin tunas by purse seine fishery was estimated high due to the high catch ratio of small fishes. The ORIs of biodiversity (ORIB) and habitat quality (ORIH) of purse seine fishery were also estimated at a high level from using fish-aggregating devices (FAD). However, due to skipjack tuna's high catches, the ORI of socio-economic benefit (ORIE) was estimated at a very low level. Due to the high bycatch rate, ORIB was high, and ORIS and ORIH were evaluated at a low level in longline fishery. Due to strengthern of fishing restrictions and increase of fishing costs, the ORIE was assessed to be very high. The ecosystem risk index (ERI) for two tuna fisheries was assessed low, but the overall FAD management by purse seine fishery is necessary at the ecosystem level.

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

A Numerical Simulation of Marine Water Quality in Ulsan Bay using an Ecosystem Model (생태계모델을 이용한 울산만의 수질 시뮬레이션)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.313-322
    • /
    • 1998
  • The distributions of chemical oxygen demand (COD) and suspended solid (SS) in Ulsan Bay were simulated and reproduced by a numerical ecosystem model for the practical application to the management of marine water quality and the prediction of water quality change due to coastal developments or the constructions of breakwater and marine facilities. Comparing the computed with the observed data of COD and SS in Ulsan bay the results of simulation were found to be good enough to satisfy the practical applications.

  • PDF

Ecological Risk Assessment of Chemicals of Concern for Initiation of Ecorisk-based Water Quality Standards in Korea (생태수질기준설정을 위한 대상물질의 생태위해성 평가)

  • An, Youn-Joo;Nam, Sun-Hwa;Kim, Yong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.592-597
    • /
    • 2008
  • Current water quality standard (WQS) in Korea is based on the protection of human health, not considering the protection of aquatic organisms. Most of chemicals can be toxic to ecological biota as well as human. Health of aquatic biota is closely related to the human health via food chain, therefore ecological risk based-WQS needs to be developed to protect the aquatic ecosystem. In this study, we selected the 31 chemicals in the Project entitled 'Development of integrated methodology for evaluation of water environment'. The methodology for calculating water quality criteria was derived from the Australian and New Zealand processes for deriving guideline trigger value for aquatic ecosystem. The available ecotoxicity data were collected from US EPA's ECOTOXicology Database (ECOTOX), TOX-2000 Database, European Chemicals Bureau (ECB)'s International Uniform Chemical Information Database (IUCLID) and Environmental Protection Agency (US EPA)'s report 'Ambient Water Quality Criteria (AWQC)'. The aquatic toxicity data for the Korean species were selected for risk assessment to reflect the Korean water environment. The monitoring values were calculated from the water quality monitoring data four main Korean rivers. We suggested the order of priorities of chemicals based on ecological risk assessment. We expect that these results can be useful information for establishing the WQS for the protection of aquatic ecosystem.

Establishment of Priority Forest Areas Based on Hydrological Ecosystem Services in Northern Vietnam (수문학적 생태계 서비스를 고려한 북부베트남의 우선보전산림 설정)

  • Kong, Inhye;Lee, Dongkun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.29-41
    • /
    • 2014
  • Ecosystem services provide various benefits to human beings, but are considered to be free of cost. To protect ecosystems in an economically sustainable way, several developing countries have adopted a policy known as the Payment for Ecosystem Services (PES) that compensates upstream services with monetary incentives collected from service users. Vietnam is one of the countries that have enacted a nationwide PES policy. However, the policy in Vietnam requires further development in order to evaluate the spatial priority zones based on the quantification of ecosystem services. To obtain a recent and high-quality land cover map, we first classified the land cover in the Da River basin, in northern Vietnam, using Landsat dataset. We then applied a water balance theory and an USLE equation to assess hydrological ecosystem services concerning water supply and sediment retention. Following the assessment, we identified the priority areas for hydrological ecosystem services exclusively for forest environments. We found that the quantity and distribution of services from forests varied, due to the topography, climate, and land cover. According to a quantile distribution, Mt. Phu Luong, Mt. Fansipan, and Hoang Lien National Park were evaluated as high service areas in terms of both water yield and sediment retention. As a result, this assessment method can help construct spatial priority zones concerning ecosystem service distribution, and can also contribute to benefit sharing by indicating which forest and landowners require compensation.

A Method of River Environmental Impact Assessment using LCA (LCA를 적용한 하천환경영향평가 방법)

  • Kim, Sung-Joon;Jin, Ming-Ji;Jeon, Yong-Tae;Shin, Seon-Mi;Choe, Yong-Seung;Won, Chan-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.93-104
    • /
    • 2012
  • In this research LCA methodology was adapted and analyzed in quantifying estimation of estuarine environment. The analysed objects of estuarine environment were construction methods, facility, and input material into water, and estuarine ecosystem. In this research the function of LCA of estuarine environment was river with the view of controling water, utilizing water, and hydrophilic function. According to the result of research, environmental damage indicator of facility was decreased 346 Pt from 453 Pt at pre-maintenance to 107 pt at post-maintenance. Among raw and subsidiary materials, remicon, stone-netting bag, and pebbles were showing heavy environmental load in the order. Evironmental impact of input material into water system was analyzed from 1,827 Pt environmental load before construction to 1,080 Pt of post-maintenance, and damage indicator was improved at 747 Pt. Water quality was improved from 1,827 Pt (before construction) to 1,080 Pt(after construction), and ecosystem was improved after maintenance. Environmental indicator in ecosystem was analyzed 427 Pt(before construction) to 348 Pt(after construction), and damage indicator of Sumnjingang riverine system was improved as much as 79 Pt. In the conclusion, estuarine environmental monitoring through LCA in the area of facility, input material into water and ecosystem showed that close-to-nature stream was 1,172 Pt better than artificial stream in environmental aspects.