• Title/Summary/Keyword: water distribution system

Search Result 1,588, Processing Time 0.029 seconds

Effect of Relative Humidity on Calcium Uptake of Tomato Plant (상대(相對) 습도(濕度)가 토마토의 Ca흡수(吸收)에 미치는 영향(影響))

  • Cho, Ill-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.178-183
    • /
    • 1997
  • The effect of different relative humidity(RH) of atmosphere on the uptake of calcium by tomato plant was investigated through an experiment in the protected cultivation system. The RH regime was imposed by humidifiying by humidifier in one plot, and by mulching the ridge to cut down the evaporation of water to lower the RH, in another plot. During the course of plant growth, RH in the humidified plot, at noon, was about 70%, while in non-humidufied plot, RH was about 50%. The humidification also resulted in the lowering of temperature significantly(by about, $3.1^{\circ}C$). This higher RH of atmosphere under humidifying treatment, resulted in the increase in the water efflux rate of root significantly(greater by 0.24g/g dry root/h than that under mulching treatment). Relatively severe occurrence of blossom end rot(23%) was observed in the humidifying treatment, while no such symptom occurred in mulching plot. The efflux rates of Ca, K and Mg were found to be higher in the humidifying plot. It was also observed that the concentrations of Ca, Mg and K in the xylem solution was 2-4 times higher than that of gydroponic solution. This suggested that the occurrence of blossom end rot, under high RH of atmosphere, would not be due to the decrease in the uptake of Ca per se, by tomato plant, but due to anomalies in the distribution of it within the plant.

  • PDF

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Evaluation of Bioavailability of Phosphorus Accumulated in Arable Soils (농경지 토양에 집적된 인산의 생물이용가능성 평가)

  • Lee, Seul-Bi;Lee, Chang-Hoon;Kim, Gun-Yeob;Lee, Jong-Sik;So, Kyu-Ho;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • BACKGROUND: Soil utilization pattern can be the main factor affecting soil physico-chemical properties, especially in soil phosphorus (P). Understanding the distribution and bioavailability of P is important for developing management to minimize P release from arable soils to environment. This study was conducted to evaluate the potential bioavailability of soil organic P by using phosphatase hydrolysis method. METHODS AND RESULTS: Twenty-four soils from onion-rice double cropping and 30 soils from plastic film house were selected from Changyeong and Daegok in Gyeongnam province, respectively. The P accumulation pattern (total P, inorganic P, organic P, residual P) and water soluble P were characterized. Commercial phosphatase enzymes were used to classify water-extractable molybdate unreactive P from arable soils into compounds that could be hydrolysed by (i) alkaline phosphomonoesterase (comprising labile orthophosphate monoesters), (ii) a combination of alkaline phosphomonoesterase and phosphodiesterase (comprising labile orthophosphate monoesters and diesters), and (iii) phytase (including inositol hexakisphosphate). Available P was highly accumulated with 616 and 1,208 mg/kg in double cropping system and plastic film house, respectively. Dissolved reactive P (DRP) and dissolved unreactive P (DUP) had similar trends with available P, showing 24 and 109 mg/kg in double cropping and 37 and 159 mg/kg in plastic film house, respectively, indicating that important role of dissolved organic P in the environments had been underestimated. From the result of phosphatase hydrolysis, about 39% and 66% of DUP was evaluated as bioavailable in double cropping and plastic film house, respectively. CONCLUSION(S): Orthophosphate monoester and orthophosphate diester accounted for high portion of dissolved organic P in arable soils, indicating that these organic P forms give important impacts on bioavailability of P released from P accumulated soils.

Density Effect and Diversity of Fish in Water System at Both Reservoirs in the Youngsan-ri, Goseong-gun (고성군 용산리의 두 저수 수계에서 어류의 다양성과 밀도 효과)

  • Huh, Man Kyu;Choi, Byoung-Ki
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.533-538
    • /
    • 2015
  • Four sites and one site were used to analyze fish diversity at the water systems of the Sineun reservoir and the Jeonchon reservoir, respectively. The field experiments were conducted to test the density dependence that could lead to population regulation by artificial inferences and environmental changes. We examined the effects of environmental factors on fish densities using SMATR freeware. It was estimated to be reduced to the density effect at four sites in 2012. Shannon-Weaver indices of the diversity (H’) of the Sineun reservoir were similar to those of the Jeonchon reservoir. Species diversity was in a range of 0.645 to 2.105. The H’ value of the upper region was higher than those of middle and low regions were, and values of richness were lower in downstream than upstream. Using the maximum likelihood solution for the removal estimators of two low regions of the river stations, the estimated migration probabilities from the resident fish to the migrated fish for five species (Cyprinus cuvieri, Carassius auratus, Pseudorasbora parva, Misgurnus mizolepis, and Oryzias latipes) had a mean of 0.623. Especially, migration probabilities from the Jeonchon reservoir to the Sineun reservoir for five species were high (a mean of 0.681). The period of migration was suggested to be about one month because of short geographical distances (50 m). We found no significant difference between the three categories in the distribution of the other four species, indicating the species probability was similar among stations.

Flow Effects on Tailored RF Gradient Echo (TRFGE) Magnetic Resonance Imaging : In-flow and In-Plane Flow Effect (Tailored RF 경자사계방향 (TRFGE} 자기공명영상(MRI)에서 유체에 의한 영상신호 변화 : 유체유입효과와 영상면내를 흐르는 유체의 효과에 대하여)

  • Mun, Chi-Ung;Kim, Sang-Tae;No, Yong-Man;Im, Tae-Hwan;Jo, Jang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1997
  • In this paper, we have reported two interesting flow effects arising in the TRFGE sequence using water flow phantom. First, we have shown that the TRFGE sequence is indeed not affected by "in-flow" effect from the unsaturated spins flowing into the imaging slice. Second, the enhancement of "in-plane flow" signal in the readout gradient direction was observed when the TRFGE sequence was used without flow compensation. These two results have many interesting applications in MR imaging other than fMRI. Results obtained were also compared with the results obtained by the conventional gradient echo(CGE) imaging. Experiments were performed at 4.7T MRI/S animal system (Biospec, BRUKER, Switzerland). A cylindrical phantom was made using acryl and a vinyl tube was inserted at the center(Fig. 1). The whole cylinder was filled with water doped with $MnCl_2$ and the center tube was filled with saline which flows in parallel to the main magnetic field along the tube. Tailored RF pulse was designed to have quadratic ($z^2$) phase distribution in slice direction(z). Imaging parameters were TR/TE = 55~85/10msec, flip angle = $30^{\circ}$, slice thickness = 2mm, matrix size = 256${\times}$256, and FOV= 10cm. In-flow effect : Axial images were obtained with and without flow using the CGE and TRFGE sequences, respectively. The flow direction was perpendicular to the image slice. In-plane flow : Sagittal images were obtained with and without flow using the TRGE sequence. The readout gradient was applied in parallel to the flow direction. We have observed that the "in-flow" effect did not affect the TRFGE image, while "in-plane flow" running along the readout gradient direction enhanced the signal in the TRFGE sequence when flow compensation gradient scheme was not used.

  • PDF

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

Characteristics of Macro Benthic Community in the Subtidal Zone of Muan Bay on Summer and Health Assessment by using AZTI Marine Biotic Index (AMBI) and Water Quality Index (WQI) (하계 무안만 조하대 저서동물군집 특성 및 AZTI의 해양생물지수(AMBI)와 수질평가지수(WQI)를 이용한 건강성 평가)

  • Oh, Jun Ho;Lee, Kyoung Seon
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Benthic animals are important indicators in benthic environmental quality assessment. This study investigated the environmental characteristics and the distribution pattern of benthic animals, and assessed the benthic ecosystem using AMBI (AZTI's marine biotic index) and WQI (water quality index) in the subtidal zone of Muan bay. Samplings were collected from 10 stations in the subtidal zone of Muan bay on summer. In the upper area of Muan bay, grain size was finer and organic content was higher than those of in the lower area. The pollution indicator organism such as Musculista senhousia, Theora fragilis and Lumbrineris longifolia were dominant at some stations. The benthic community was distinguished into three groups of upper, center and lower area of Muan bay, and which were coincided with the results by correlation analysis between organic matter content and benthic health assessment (WQI and AMBI). As a result of this study, the health condition of the subtidal zone in Muan bay were good. However, from the results that benthic animals were not evenly distributed, and also the opportunistic species appeared, the load of organic matter in Muan bay seems to be increasing.

A Study on Microbial Community Diversity and Antibiotic Resistance in Public Waters in Gwangju (광주지역 공공수역의 미생물 군집 다양성 및 항생제 내성에 관한 연구)

  • Sun-Jung Kim;Ji-Young Park;Seung-Ho Kim;Min-Hwa Lim;Ji-Yong Yu;Kyu-Sung Han;Se-Il Park;Gwangyeob Seo;Gwangwoon Cho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Background: As pollutants caused by non-point sources flow into rivers, river water quality monitoring for fecal pollution is becoming increasingly important. Objectives: This study was conducted to investigate the distribution of microbial communities in the Yeongsangang River water system and sewage treatment plants in Gwangju and to evaluate their antibiotic resistance. Methods: In the experiment, samples were distributed to five selective media at each point and then cultured for 18 to 24 hours. When bacteria were observed, they were sub-cultured by size and shape and identified using MALDI-TOF MS equipment. When identification was completed, 17 types of antibiotic susceptibility tests were performed using VITEK II equipment, focusing on gram-negative dominant species among the identified strains. Results: During the study period, a total of 266 strains were isolated from 39 samples. Gram-positive bacteria were 37 strains in four genera, or 13.9% of the total, and Gram-negative bacteria were 229 strains in 23 genera, or 86.1% of the total. Antibiotic susceptibility testing of 23 strains, the major dominant species, showed that one strain (4.3%) was resistant to only one antibiotic, and two strains (8.7%) were 100% susceptible to the 17 antibiotics tested. The other 20 strains (87.0%) were multidrug resistant bacteria resistant to two or more antibiotics. There were various types of multidrug resistance. Among them, penicillin and cephalosporin series showed the highest resistance. Conclusions: Based on the results of this study, it was found that the bacterial community structure changed according to regional and environmental factors, and it was judged that continuous research such as genetic analysis of antibiotic-resistant bacteria present in natural rivers is necessary.