DOI QR코드

DOI QR Code

Calculation of optimal design flood using cost-benefit analysis with uncertainty

불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정

  • Kim, Sang Ug (Department of Civil Engineering, Kangwon National University) ;
  • Choi, Kwang Bae (KHNP Hydro-Power Research & Development Training Center)
  • 김상욱 (강원대학교 공과대학 건축토목환경공학부) ;
  • 최광배 (한국수력원자력 수력처 수력연구교육센터)
  • Received : 2022.02.04
  • Accepted : 2022.04.04
  • Published : 2022.06.30

Abstract

Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

홍수피해를 최소화하기 위한 수공구조물의 적정 규모 결정을 위해 사용되는 홍수빈도분석에는 통계적 분석절차에 따른 불확실성이 포함된다. 따라서 불확실성이 포함된 범주 내에서 가장 적절한 설계홍수량(design flood)을 결정하는 과정은 수공구조물의 최종단계에서 중요하게 다루어져야 하는 부분이나 이를 제시한 연구는 많지 않다. 비용-편익 분석기법을 홍수빈도분석 절차에 도입하여 구성되는 총 기대비용함수(total expected cost function)는 설계홍수량 중 최적설계홍수량(optimal design flood)을 결정하기 위한 새로운 접근방식이다. 이 절차는 UNCODE (UNcertainty COmpliant DEsign)로 명명되어 사용된 바 있으나, 국내에서는 아직 적용 결과가 소개되지 않고 있다. 따라서 본 연구에서는 UNCODE의 수학적 구성 절차를 소개함과 함께 북한강수계에 위치한 수력발전댐(화천댐, 춘천댐, 의암댐, 청평댐)의 연최대유입량을 사용하여 최적설계홍수량을 산정하고 이 결과를 기존 홍수빈도분석 결과와 비교하였다. 불확실성이 고려된 총 기대비용함수로부터 확률분포함수들(Gumbel 및 GEV)의 모수를 추출하는 과정에서 Metropolis-Hastings 알고리즘을 사용하여 불확실성의 범위를 추정하였으며, 비용-편익 분석기법에 사용되는 비용 및 피해함수는 수학적 구성의 편의성을 위하여 1차 선형함수로 가정되었다. 4개의 발전용댐, 2개의 확률분포 및 2개의 재현기간에 대하여 최적설계홍수량의 중앙값이 기존 홍수빈도분석 절차에 의해 산정된 설계홍수량보다 일정 정도 큰 값으로 산정됨을 알 수 있었다. 향후에는 본 연구에서 적용된 절차를 간단한 수식형태로 함수화하여 발전용댐 운영의 실무업무나 하천기본계획의 수립 등에 있어 비용-편익분석 기법의 적용성을 높이기 위한 연구가 필요할 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 2021년 교육부 재원을 이용한 한국연구재단의 기초연구사업(NRF-2021R1F1A1047623)에 의해 수행되었습니다. 연구비 지원에 감사를 표합니다.

References

  1. Ahilan, S., O'Sullivan, J.J., and Bruen, M. (2012). "Influences of flood frequency distributions in Irish river catchments." Hydrology and Earth System Sciences, Vol. 16, No. 4, pp. 1137-1150. https://doi.org/10.5194/hess-16-1137-2012
  2. Botto, A., Ganora, D., Claps, P., and Laio, F. (2017). "Technical note: Design flood under hydrological uncertainty." Hydrology and Earth System Sciences, Vol. 21, No. 7, pp. 3353-3358. https://doi.org/10.5194/hess-21-3353-2017
  3. Botto, A., Ganora, D., Laio, F., and Claps, P. (2014). "Uncertainty compliant design flood estimation." Water Resources Research, Vol. 50, pp. 4242-4253. https://doi.org/10.1002/2013WR014981
  4. Davis, D., Faber, B.A., and Stedinger, J.R. (2008). "USACE experience in implementing risk analysis for flood damage reduction projects." Jounal of Contemporary Water Resources Education, Vol. 140, No. 1, pp. 3-14. https://doi.org/10.1111/j.1936-704X.2008.00023.x
  5. De Michele, C., and Rosso, R. (2001). "Uncertainty assessment of regionalized flood frequency estimates." Jounal of Hydrologic Engineering, Vol. 6, No. 6, pp. 453-459. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(453)
  6. Ganoulis, J. (2003). "Risk-based floodplain management: A case study from Greece." International Jounal of River Basin Management, Vol. 1, No. 1, pp. 41-47. https://doi.org/10.1080/15715124.2003.9635191
  7. Gelman, A., and Rubin, DB., (1992). "Inference from iterative simulation using multiple sequences." Statical Science, Vol. 7, pp. 457-511.
  8. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Staff Report 148, Federal Reserve Bank of Minneapolis Research Department, MN, U.S.
  9. Jung, J.H., and Yoon, Y.N. (2020). Water resources engineering design practice. Gumiseogwan.
  10. Kim, S.U., and Lee, C.E. (2021). "Incorporation of cost-benefit analysis considering epistemic uncertainty for calculating the optimal design flood." Water Resources Management, Vol. 35, pp. 757-774. https://doi.org/10.1007/s11269-021-02764-z
  11. Kuczera, G. (1999). "Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference." Water Resources Research, Vol. 35, No. 5, pp. 1551-1557. https://doi.org/10.1029/1999WR900012
  12. Lee, K.S., and Kim, S.U. (2008). "Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method." Hydrological Process, Vol. 22, No. 12, pp. 1949-1964. https://doi.org/10.1002/hyp.6778
  13. Menoni, S., Molinari, D., Ballio, F., Minucci, G., Mejri, O., Atun, F., Bernni, N., and Pandolfo, C. (2016). "Flood damage: A model for consistent, complete and multipurpose scenarios." Natuaral Hazards and Earth System Sciences, Vol. 16, No. 12, pp. 2783-2797. https://doi.org/10.5194/nhess-16-2783-2016
  14. Metropolis, N., Rosenbluth, A.W., Teller, A.H., and Teller., E. (1953). "Equations of state calculations by fast computing machines." Journal of Chemical and Physics, Vol. 21, No. 6, pp. 1087-1092. https://doi.org/10.1063/1.1699114
  15. Nadarajah, S., and Ali., M.M. (2008). "Pareto random variables for hydrological modeling." Water Resources Management, Vol. 22, No. 10, pp. 1381-1393. https://doi.org/10.1007/s11269-007-9231-7
  16. Onoz, B., and Bayazit, M. (1995). "Best-fit distributions of largest available flood samples." Journal of Hydrology, Vol. 167, No. 1, pp. 195-208. https://doi.org/10.1016/0022-1694(94)02633-M
  17. Paprotny, D., Vousdoukas, M.I., Morales-Napoles, O., Jonkman, S.N., and Feyen, L. (2020). "Pan-European hydrodynamic models and their ability to identify compound floods." Natural Hazards, Vol. 101, pp. 933-957. https://doi.org/10.1007/s11069-020-03902-3
  18. Raftery, A.E., and Lewis, S. (1992). "How many iterations in the Gibbs sampler?" University of Washington, WA, U.S.
  19. Rao, A.R., and Hamed, K.H. (2000). Flood frequency analysis. CRC Press, NY, U.S.
  20. Rothlisberger, V., Zischg, A.P., and Keiler, M.A. (2018). "Comparison of building value models for flood risk analysis." Natural Hazards and Earth System Sciences, Vo l. 18, pp. 2431-2453. https://doi.org/10.5194/nhess-18-2431-2018
  21. Salman, A.M., and Li, Y. (2018). "Flood risk assessment, future trend modeling, and risk communication: A review of ongoing research." Natural Hazards Review, Vol. 19, No. 3, pp. 1-54.
  22. US Army Corps of Engineers (USACE) (1996). Risk-based analysis for flood damage reduction studies; Eng. Workshop, 1110-2-1619; Washington D.C., U.S.
  23. Wood, E.F., and Rodriguez-Iturbe, I. (1975). "Bayesian inference and decision making for extreme hydrologic events." Water Resources Research, Vol. 11, No. 4, pp. 533-542. https://doi.org/10.1029/WR011i004p00533
  24. Xie, A., Liu, P., Guo, S., Zhang, X., Jiang, H., and Yang, G. (2018). "Optimal design of seasonal flood limited water levels by jointing operation of the reservoir and flood plains." Water Resources Management, Vol. 32, pp. 179-193. https://doi.org/10.1007/s11269-017-1802-7