• Title/Summary/Keyword: water discharge capability

Search Result 46, Processing Time 0.026 seconds

Development of Reservoir Operation Model using Simulation Technique in Flood Season (I) (모의기법에 의한 홍수기 저수지 운영 모형 개발 (I))

  • Sin, Yong-No;Maeng, Seung-Jin;Go, Ik-Hwan;Lee, Hwan-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.745-755
    • /
    • 2000
  • The dam operation system of KOWACO for flood control doesn't have capability to account for the downstream hydrologic conditions and any feasible index to decide the pre-release from the forecasted rainfall and inflow. In this study, a dam operation model for flood control was developed to account for the flood flow condition of its downstream to give users the dam release schedules. Application test of EV ROM to Keum River showed that EV ROM is superior to the Rigid ROM and Technical ROM which are currently used by KOWACO. EV ROM developed in this study provides a release schedule accounting for the cumulative lateral flow hydrograph at the downstream control points where the discharge does not depend only on the dam operation. but also on lateral inflow from the tributaries. In order to reduce the peak discharge at the control points, it suggests the preliminary release during the early rising phase of the predicted hydrograph, holding the flood flow inside the dam during a peak phase, and afterward resuming the release. Three case studies of flood control by the operation of Daechung Multipurpose Dam in Geum River Basin show that the EV ROM is superior to the Rigid ROM and Technical ROM. This must be due to its nature to account for the downstream flow condition as well as the inflow and water level of the dam. It was also conceived that further case studies of EV ROM and more accurate rainfall prediction would improve the dam operation for flood control.ontrol.

  • PDF

Validation of spent nuclear fuel decay heat calculation by a two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Park, Jinsu;Choe, Jiwon;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.44-60
    • /
    • 2021
  • In this paper, we validate the decay heat calculation capability via a two-step method to analyze spent nuclear fuel (SNF) discharged from pressurized water reactors (PWRs). The calculation method is implemented with a lattice code STREAM and a nodal diffusion code RAST-K. One of the features of this method is the direct consideration of three-dimensional (3D) core simulation conditions with the advantage of a short simulation time. Other features include the prediction of the isotope inventory by Lagrange non-linear interpolation and the use of power history correction factors. The validation is performed with 58 decay heat measurements of 48 fuel assemblies (FAs) discharged from five PWRs operated in Sweden and the United States. These realistic benchmarks cover the discharge burnup range up to 51 GWd/MTU, 23.2 years of cooling time, and spanning an initial uranium enrichment range of 2.100-4.005 wt percent. The SNF analysis capability of STREAM is also employed in the code-to-code comparison. Compared to the measurements, the validation results of the FA calculation with RAST-K are within ±4%, and the pin-wise results are within ±4.3%. This paper successfully demonstrates that the developed decay heat calculation method can perform SNF back-end cycle analyses.

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

An experimental study on development of water mist fire-fighting systems for Ro-Ro spaces (Ro-Ro 구역용 미분무 소화설비의 개발을 위한 실험적 연구)

  • Kwark, Ji-Hyun;Kim, Young-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.946-952
    • /
    • 2013
  • Large scale fire tests were conducted to develop water mist nozzles as a component of fixed water- based fire fighting systems for Ro-Ro spaces and special category spaces. Fire scenarios for this system consist of two cases which are for cargo fire in a simulated truck and for passenger vehicle fire, and each case has 3 different tests according to the position between fixed water mist nozzles and fire source. Every experiment proceeded for 30 minutes and acceptance criteria were based on gas temperature, fuel package's damage and ignition of targets. This study primarily dealt with the experimental results of cargo fire and focused on fire suppression capability in accordance with discharge pressure, flow rate and flow characteristics like swirl and penetration of the developed water mist nozzles. It appeared that low pressure water mist nozzles with about 40 L/min were able to control fire occurred in Ro-Ro spaces.

Plane Experiments for Estimating Performance of the Sluice of Tidal Power Plant (조력발전용 수문 성능평가를 위한 평면 수리모형실험)

  • Oh, Sang-Ho;Lee, Kwang-Soo;Jang, Se-Chul;Lee, Dal-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.474-481
    • /
    • 2011
  • The discharge coefficient and spatial velocity distribution were clarified by carrying out a physical experiment to assess the performance of sluice for tidal power generation. The physical experiment was performed by manufacturing 10 sluce models whose scale is 1/70 of the prototype and installing it in the planar open channel, which has apron sections in front of and behind the sluice models. In particular, it was attempted to reasonably determine the locations and method of measuring water levels that may affect estimation of the discharge coefficient. Based on the experimental results for various conditions of discharges and tidal levels, the discharge coefficient of the sluice in the experiment was estimated as 1.3 to 1.4. Meanwhile, it was found that velocities were 2~3% faster at the sluices near the central region whereas 4~5% slower at the sluices on both sides, in comparison to the average value of the mean velocities of the ten sluices.

Maximum Value Calculation of High Dose Radioiodine Therapy Room (고용량 방사성옥소 치료 병실의 최대치 산출)

  • Lee, Kyung-Jae;Cho, Hyun-Duck;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Purpose: According to increment of thyroid cancer recently, patients of high dose radioiodine therapy were accumulated. Taking into consideration the acceptance capability in the current facility, this study is to calculate the maximum value of high dose radioiodine therapy in patients for treatment. Materials and Methods: The amount and radioactivity of waste water discharged from high dose radioiodine therapy in patients admitted at present hospital as well as the radiation density of the air released into the atmosphere from the high dose radioiodine therapy ward were measured. When the calculated waste water's radiation and its density in the released air satisfies the standard (management standard for discharge into water supply 30 Bq/L, management standard for release into air 3 $Bq/m^3$) set by the Ministry of Education, Science and Technology, the maximum value of treatable high dose radioiodine therapy in patients was calculated. Results: When we calculated in a conservative view, the average density of radiation of waste water discharged from treating high dose radioiodine therapy one patient was 8 MBq/L and after 117 days of diminution in the water-purifier tank, it was 29.5 Bq/L. Also, the average density of radiation of waste water discharged from treating high dose radioiodine therapy two patients was 16 MBq/L and after 70 days of diminution in the water-purifier tank, it was 29.7 Bq/L. Under the same conditions, the density of radiation released into air through RI Ventilation Filter from the radioiodine therapy ward was 0.38 $Bq/m^3$. Conclusion: The maximum value of high dose radioiodine therapy in patients that can be treated within the acceptance capability was calculated and applied to the current facility, and if double rooms are managed by improving the ward structure, it would be possible to reduce the accumulated treatment waiting period for radioiodine therapy in patients.

  • PDF

Estimation for Runoff based on the Regional-scale Weather Model Applications:Cheongmi Region (중소규모 (WRF-ARW) 기후모델을 이용한 지역유출 모의 평가:청미천 지역을 중심으로)

  • Baek, JongJin;Jung, Yong;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.29-39
    • /
    • 2012
  • Climate change has been obtained researchers' interest, especially in water resources engineering to adjust current conditions to the new circumstance influenced by climate change. In this study, WRF-ARW will be evaluated the capability to estimate distributed precipitation using global weather information instead of the data from rainfall observatory or radar. Cheongmi watershed is selected and adopted to generate a distributed rainfall-runoff model using ModClark. The results from the distributed model with precipitation data from WRF-ARW and the lumped model using observed precipitation data were compared to the observed discharge values. The final results showed that the distributed model, ModClark generated similar pattern of hydrograph to the observations in terms of the time and amount of peak discharge. In addition, the trend of hydrograph from the distributed model presented similar pattern to the observations.

Experimence Study of Trace Water and Oxygen Impact on SF6 Decomposition Characteristics Under Partial Discharge

  • Zeng, Fuping;Tang, Ju;Xie, Yanbin;Zhou, Qian;Zhang, Chaohai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1786-1795
    • /
    • 2015
  • It is common practice to identify the insulation faults of GIS through monitor the contents of SF6 decomposed components. Partial discharges (PD) could lead to the decomposition of SF6 dielectric, so new reactions usually occur in the mixture of the newly decomposed components including traces of H2O and O2. The new reactions also cause the decomposed components to differ due to the different amounts of H2O and O2 even under the same strength of PD. Thus, the accuracy of assessing the insulation faults is definitely influenced when using the concentration and corresponding change of decomposed components. In the present research, a needle-plate electrode was employed to simulate the PD event of a metal protrusion insulation fault for two main characteristic components SO2F2 and SOF2, and to carry out influence analysis of trace H2O and O2 on the characteristic components. The research shows that trace H2O has the capability of catching an F atom, which inhibits low-sulfide SFx from recombining into high-sulfide SF6. Thus, the amount of SOF2 strongly correlates to the amount of trace H2O, whereas the amount of SO2F2 is weakly related to trace H2O. Furthermore, the dilution effect of trace O2 on SOF2 obviously exceeds that of SO2F2.

Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts (논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템)

  • Kang, Min Goo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

The Ultrasonic Treatment Characteristics of LiV$_3$O$_8$ by New Synthesis (새로운 합성법에 의한 LiV$_3$O$_8$ 의 초음파처리 특성)

  • 박수길;김종진;손원근;김상욱;류부형;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.151-154
    • /
    • 1998
  • The layered trivanadate, LiV$_3$O$_{8}$ has been investigated as a cathode material for secondary lithium batteries. Early in its development the preparation method of LiV$_3$O$_{8}$ strongly influenced its electrochemical properties, such as discharge capacity, rate capability and cycling efficiency. In the present experiment, a new synthesis route has been applied to obtain LiV$_3$O$_{8}$ . Instead of the conventional high temperature technique leading to the crystalline form, a solution technique producing the amorphous form has been used. This material, after dehydration, shows an electrochemical performance exeeding that of the crystalline one. The rationale for this behavior mainly lies in microscopic factors, i.e., in the possibility for the unit cell of amorphous LiV$_3$O$_{8}$ to insert up to 9 Li$^{+}$, instead of six for crystalline LiV$_3$O$_{8}$ . The ultrasonically treated products in water were characterized by XRD, TGA, DSC, and SEM. These measurements showed that the ultrasonic treatment process of crystalline LiV$_3$O$_{8}$ causes a decrease in crystallinity and considerable increases in specific surface area and interlayer spacing.g.

  • PDF