• Title/Summary/Keyword: water depth

Search Result 4,747, Processing Time 0.031 seconds

Longitudinal Penetration of Water through the Vessel and Wood Fiber in Castanea crenata

  • Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2008
  • An experiment was conducted to know ultra-pure distilled water penetration depth through large vessel, small vessel, latewood fiber and earlywood fiber in longitudinal direction of Castanea crenata. In heartwood, latewood fiber transported water more than large and small vessel. While in sapwood, small vessel conduction depth was found the highest. Penetration depth of water after 15.0 seconds, no significant difference was observed among earlywood fiber, latewood fiber and earlywood vessel. Whilst in heartwood, no statistical difference was observed among earlywood fiber, latewood fiber and earlywood vessel. At the beginning, the speed of water penetration was high and then gradually decreased.

  • PDF

Prediction of Water Penetration and Diffusion in Concrete Through FEM Analysis (FEM해석을 통한 콘크리트내 수분침투 및 확산 예측)

  • Yoo, Jo-Hyeong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.87-88
    • /
    • 2010
  • A permeability of concrete is a very important factors evaluating durability. So, we are carrying out a lot of relational data bases and experiment regarding a permeability. In order to evaluate a permeability of concrete, we are proceeding study on the water penetration and diffusion in concrete by water pressure. Because a way to evaluate a permeability of concrete has a limit. We will present a good method of evaluating durability of concrete using the water penetration depth of concrete by water pressure. To carry this out, we executed experiment with penetration depth of concrete by water pressure and verified it though FEM analysis.

  • PDF

Wave Overtopping Formula for Vertical Structure Including Effects of Wave Period : Non-breaking Conditions (주기영향을 고려한 직립식 구조물의 월파량 산정 : 비쇄파조건)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.228-234
    • /
    • 2012
  • Two-dimensional hydraulic experiments for wave overtopping under non-breaking wave condition are conducted. The wave overtopping formula for vertical structure is suggested and the results are compared with EurOtop (2007). The relative water depth coefficient (${\gamma}_{kh}$) shows that almost the same coefficient is obtained for certain range (kh > 1.55) regardless of relative water depth, that is, although the relative water depth becomes larger, the relative water depth coefficient is almost same. When the wave steepness becomes larger the wave steepness coefficient decreases. The overtopping formula are expressed by relative freeboard(R) and non-dimensional wave overtopping rate(Q) and this formula has the form of exponential function. In this formula, the effects of wave period on wave overtopping are quantitatively investigated and suggested through the relative water depth coefficient(${\gamma}_{kh}$) and wave steepness coefficient(${\gamma}_s$).

Explicit Analysis of Flows in Box Culvert (사각형 암거흐름의 양해적 해석)

  • Yoo, Dong-Hoon;Uhm, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.481-494
    • /
    • 2003
  • Flow through the culvert is very complex depending on the characteristics of hydraulic conditions. A design method using a monograph is normally employed due to the wide range of flow characteristics and the difficulty of calculating inlet water depth. The present study suggests the method for determining the inlet water depth of box culvert using Bernoulli's equation. By employing the explicit equation of inlet water depth, a standard design method of box culvert is developed for a wide range of flow characteristics. Explicit solution techniques are proposed to determine the width and height, slope and discharge of box culvert.

Scenario-Based Exposure Risk Assessment of Molinate in a Paddy Plot : (1) Analysis of simulation results (시나리오별 논에서의 Molinate 노출위험도 분석: (1) 시뮬레이션 결과 분석)

  • Chung, Sang-Ok;Park, Ki-Jung;Son, Seung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.11-16
    • /
    • 2008
  • The effects of water and pesticide management practices on ponded water pesticide concentrations in a paddy plot were analysed using the RICEWQ model. The molinate which is a herbicide widely used in rice culture, and frequently detected in paddy environment was selected. In a previous study, the RICEWQ model was successfully calibrated with field data obtained from a paddy plot in Daegu. The calibrated model was run using water and pesticide management scenarios with a set of measured meteorological data for 1997-2006 in Daegu. For all three ponded water depths with the label rate application, the amount of molinate dissipated in ponded water and volatilized accounted for more than 70%, and the runoff losses were less than 9%. The molinate losses through drainage in the very shallow ponded depth showed 40% less than that in deep ponded depth. Comparing with the deep and shallow ponded depth, the very shallow depth was the best with regards to the reduction of molinate runoff losses. Simulations with different pesticide application rates, label rate and double label rate, showed molinate concentrations in the ponded water increased linearly with the application rate increase.

Measuring Water Volume of Reservoir by Echosounding (에코사운딩에 의한 저수지 담수량 산정에 관한 연구)

  • Choi, Byoung-Gil;Lee, Hyung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.55-59
    • /
    • 2007
  • This study is aimed to acquire the depth information and measure the water volume of reservoir using the robot-ship equipped with GPS and echosounder. Robot-ship is an automatic system for measuring exact depth and bed topography. According to field experiment results, measured water volume by the robot-ship data was not much exceeding 6.8% in comparison with existing water volume data, and it was guessed because of sediments of reservoir bottom. The robot-ship could be used to acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

  • PDF

Estimation on the Physical Habitat Suitability of Benthic Macroinvertebrates in the Gapyeong Stream (가평천 저서성 대형무척추동물의 물리적 서식처 적합성 평가)

  • Kong, Dongsoo;Kim, Ah Reum
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.311-325
    • /
    • 2017
  • Habitat suitability index (HSI) of 17 benthic macroinvertebrate taxa, which were lotic insects of generic category except Potamanthidae in mayfly, was developed for three physical habitat factors (current velocity, water depth and substrate) based on an ecological monitoring in a Korean stream (Gapyeong). Weibull model was used as a probability density function to analyze the distribution of individual abundance related with physical factors, which showed it was so available. Number of species and total individual abundance increased along with the increase of current velocity and the mean diameter of substrate, and decreased along with the increase of water depth. Most taxa showed a clear preference for a fast current velocity, shallow water depth and coarse substrate except Ephemera, Potamanthidae (mayfly), and Plectrocnemia (caddisfly) which were rheophobic, potamophilic and lithophobious. Based on the canonical correspondence analysis, the relative importance of each factor was determined as follows: current velocity > substrate > water depth.

A more efficient numerical evaluation of the green function in finite water depth

  • Xie, Zhitian;Liu, Yujie;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.399-412
    • /
    • 2017
  • The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System (해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구)

  • Kim, Samuel;Park, Jin-Young;Park, Jae-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.