DOI QR코드

DOI QR Code

Wave Overtopping Formula for Vertical Structure Including Effects of Wave Period : Non-breaking Conditions

주기영향을 고려한 직립식 구조물의 월파량 산정 : 비쇄파조건

  • Kim, Young-Taek (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jong-In (Department of Marine and Civil Engineering, Chonnam National University)
  • 김영택 (한국건설기술연구원 하천해안연구실) ;
  • 이종인 (전남대학교 공학대학 해양토목공학과)
  • Received : 2012.01.06
  • Accepted : 2012.06.20
  • Published : 2012.06.29

Abstract

Two-dimensional hydraulic experiments for wave overtopping under non-breaking wave condition are conducted. The wave overtopping formula for vertical structure is suggested and the results are compared with EurOtop (2007). The relative water depth coefficient (${\gamma}_{kh}$) shows that almost the same coefficient is obtained for certain range (kh > 1.55) regardless of relative water depth, that is, although the relative water depth becomes larger, the relative water depth coefficient is almost same. When the wave steepness becomes larger the wave steepness coefficient decreases. The overtopping formula are expressed by relative freeboard(R) and non-dimensional wave overtopping rate(Q) and this formula has the form of exponential function. In this formula, the effects of wave period on wave overtopping are quantitatively investigated and suggested through the relative water depth coefficient(${\gamma}_{kh}$) and wave steepness coefficient(${\gamma}_s$).

비쇄파조건의 2차원 수리실험을 통해 직립식 구조물에 대한 월파량 산정식을 제안하였으며, 본 연구의 결과를 EurOtop(2007)과 비교하였다. 상대수심 영향계수(${\gamma}_{kh}$)를 통해 특정 상대수심 범위(kh > 1.55) 내에서는 상대수심이 증가하여도 거의 동일한 영향계수가 산정됨을 알 수 있었다. 그리고 파형경사의 경우에는 파형경사가 증가함에 따라 월파량 영향계수가 감소하는 것을 알 수 있었다. 월파량 산정식은 상대여유고와 무차원 월파량의 지수함수 형태로 표현하였으며, 상대수심 영향계수 및 파형경사 영향계수(${\gamma}_s$)를 제시하여 주기효과를 정량적으로 고려할 수 있는 월파량 산정식을 제안하였다.

Keywords

References

  1. 김영택, 이종인, 조용식, 하태민 (2010). 경사입사파에 대한 직립식구조물에서의 월파량 저감계수. 한국해안.해양공학회논문집, 22(3), 149-155.
  2. 이원 (2008). 사석경사제 호안의 월파특성, 한양대학교 석사학위논문.
  3. 일본항만협회 (1999). 港灣の施設の技術上の基準.同解說.
  4. 해양수산부 (2005). 항만 및 어항 설계기준.
  5. Anderson T.L. and Burcharth H.F. (2009). Three-dimensional investigation of wave overtopping on rubble mound structures, Coastal Engineering, 56, 180-189. https://doi.org/10.1016/j.coastaleng.2008.03.007
  6. British Standard(BS) (2001). British Standards Institution.
  7. Coastal Engineering Manual(CEM) (2004). U.S. Army Corps of Engineers.
  8. EurtOtop (2007). EurOtop-Wave overtopping of sea defences and related structures : Assessment Manual.
  9. Franco, C. and Franco, L. (1999). Overtopping Formula for Caisson Breakwaters with Nonbreaking 3D Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(2), 98-108. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:2(98)
  10. Goda, Y. (1985). Random seas and design of maritime structures. World Scientific Publishing.
  11. Owen, M.W. (1980). "Design of seawalls allowing for wave overtopping." Report No. EX924, HR Wallingford.
  12. van der Meer and Janssen J.P.F.M. (1994). Wave run-up and overtopping at dikes. Wave forces on inclined and vertical wall structures, ASCE.

Cited by

  1. Laboratory Experiments of Stem Waves along a Vertical Structure under Overtopping Conditions vol.45, pp.12, 2012, https://doi.org/10.3741/JKWRA.2012.45.12.1275
  2. Wave Overtopping Formula for Impulsive and Non-Impulsive Wave Conditions against Vertical Wall vol.27, pp.3, 2015, https://doi.org/10.9765/KSCOE.2015.27.3.175