• Title/Summary/Keyword: water cycle management

Search Result 291, Processing Time 0.026 seconds

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

Development of BIM based LID Facilities Supply Auto-checking Module (BIM 기반 LID 시설 물량 자동 검토 모듈 개발)

  • Choi, Junwoo;Jung, Jongsuk;Lim, Seokhwa;Choi, Joungjoo;Kim, Shin;Hyun, Kyounghak
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.195-206
    • /
    • 2017
  • Recently, Discussion about BIM based LID (Low Impact Development) facilities management system is activated because interest of LID technique for urban water cycle restoration is increasing. For this reason, this paper developed the auto-checking module of the BIM (Building Information Model) based supply output table. This module will be the foundation of the BIM based LID facilities total management system. The research order is composed like next follows: (1) Select target area, (2) Make BIM model of LID facilities and extract supply output table, (3) Develop comparison module, (4) Analysis results. As a result, the authors made 27 LID facilities and developed the supply output table comparison automation module. So, the authors could find differences of 2D design documents based supply output table and BIm based supply output table. So, the authors made an improvement suggestion of the design plan and could construct foundation of the BIM based LID facilities total management system.

Seasonal variation in biochemical composition and gonadal development of ark shell, Scapharca broughtonii (Bivalvia: Arcidae) from Gamag bay of Southern coast, Korea (가막만 피조개 Scapharca broughtonii의 생식소 발달과 체성분의 계절적 변화)

  • Shin, Yun-Kyung;Im, Je-Hyun;Son, Maeng-Hyun;Kim, Eung-Oh
    • The Korean Journal of Malacology
    • /
    • v.28 no.1
    • /
    • pp.73-79
    • /
    • 2012
  • Seasonal changes in biochemical composition of muscle, gonad-viceral, mass and whole body of the cultured ark shell, Scapharca broughtonii in the Gamag bay of Yeosu city were studied from December 2008 to November 2009 in relation to environmental condition and reproductive cycles. Average monthly water temperature in the winter was in the range of $7-12^{\circ}C$ and $20-25^{\circ}C$ in the summer, while the salinity fluctuated in the range of 30.1%-33.8‰ on the average. Seasonal fluctuation of the concentration of nutrient salt was the highest in September ($13.04{\mu}g/L$) with average annual concentration of $4.6{\mu}g/L$. The main spawning season of the ark shell was during the months of July and August, and the gonads were in inactive stage during the winter. The gonad-visceral mass contained lower amounts of proteins than the other body parts. The most marked changes in body composition were lipids and carbohydrates within the gonad-visceral mass, and protein for each of the organs was relatively consistent throughout the year. All the parts in the visceral sac displayed the highest changes during the gametogenic cycle while the contents of moisture and lipid within the visceral act displayed somewhat inverse relations with each other. Moisture content was the lowest during the inactive stage during which the lipid content is the highest. The lipid content was the lowest immediately following spawning with increase in the moisture content as the lipid is being consumed. Protein mass within the visceral sac was low in comparison to the muscle mass. It is deemed that carbohydrates, lipids and proteins in the visceral sac play the major role as the source of energy during the development process of the gonads, and used for maintenance of base metabolism when available food is scarce.

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.

Investigation of Zooplankton Communities in Streams in Northern Gyeonggi-do Province (경기북부 주요 하천 내 동물플랑크톤 군집특성 조사 연구)

  • Go, Soon-Mi;Im, Heung-Bin;Jung, Eun-Hee;Kim, Tae-Yuel;Kim, Jae-Kwang;Choi, Jeong-In;Lee, Ho-Jung;Oh, Jo-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.426-433
    • /
    • 2019
  • Objectives: Zooplankton communities play important roles in aquatic ecosystems as secondary producers that graze on phytoplankton and in turn are preyed upon by planktivorous and juvenile fish. They can shift their distribution, species composition, and abundance in response to environmental changes. Therefore zooplankton communities are important for understanding the energy flow in aquatic ecosystems and can be valuable indicators of environmental conditions. However, zooplankton in streams are still not well-studied, especially in northern Gyeonggi-do Province. This study aims to investigate the zooplankton communities in major streams in northern Gyeonggi-do Province. Methods: Zooplankton is important in the nutrient cycle and energy flow of aquatic ecosystems. Therefore, we surveyed zooplankton and measured temperature, DO, BOD, COD, T-N, T-P, and Chl-a in major streams (Sincheon, Gongneungcheon, Wangsukcheon, and Gapyeongcheon Streams) and stagnant water (Gomoji Reservoir). Results: The water quality in Gapyeongcheon Stream was the highest grade, while that of Gomoji Reservoir was mesoeutrophic and eutrophic during the research period. In the zooplankton community, Nauplius, Rotaria, and Monostyla spp. were dominant in Sincheon, Gongneungcheon, and Wangsukcheon Streams, and the dominance index was also high. In the case of Gapyeongcheon Stream, it was found that water quality and aquatic ecosystem health were good, and the lowest dominance index reflected this. In Gomoji Reservoir, Polyarthra spp., Nauplius, and Bosmina longirostris, which can be easily observed as eutrophication progresses, showed a high dominance rate. Therefore, it is necessary to monitor the progress of eutrophication in further research. Conclusions: We collected data on the zooplankton communities in streams and investigated their characteristics. As a result, specific species were found to be dominant at each survey sites and some of them are known to be observed as eutrophication progresses. Therefore, we should investigate the zooplankton community of streams around us and apply ecological stream management.

The Road Subsidence Status and Safety Improvement Plans (도로함몰 실태와 안전관리 개선 방안)

  • Bae, Yoon-Shin;Kim, Kyoon-Tai;Lee, Sang-Yum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.545-552
    • /
    • 2017
  • Ground subsidence can result in the formation of sinkholes, potholes, settlement of structures, and road subsidence. Road subsidence is described as the sudden collapse of the road surface into subsurface cavities caused by the loss of bearing capacity in the ground, such as the dissolution of limestone by fluid flow in the surface causing the formation of voids leading to subsidence at the surface. Road subsidence occurs about 665 times annually, and this incidence has been increasing until 2013. Damaged underground facilities, management negligence, and lowering of the ground water table have been the causes of road subsidence in Seoul. Seoul metropolitan government announced special management counter plans to relieve the anxieties and make the roads safe for passing. Construction sites, such as excavation works, need to be managed properly because they have strong potential to induce road subsidence. The aim of this study was to identify the main causes of road subsidence and suggest management plans. First, life cycle cost analysis revealed the daytime construction to be more appropriate than nighttime. In addition, by analyzing the limitations of using sand as a backfill material, it is proposed to use a flowable backfill material instead of sand. Finally, to reduce the blind spots, which is a problem in surveying the road pavement conditions of local governments, the road to be managed is divided into several zones, and a specialized agency is selected for each zone and a method of surveying the blind spots through collaboration is suggested.

The Monitoring of Sediment on the Basin Using LiDAR Data (LiDAR 자료를 이용한 유역의 퇴적물 모니터링)

  • Kang Joon-Mook;Kang Young-Mi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.27-36
    • /
    • 2006
  • Most of domestic multipurpose dams were basin area to be large, therefore, soil loss were occurred by downpour in the rainy season, They have caused to accumulate sediments on the river and dam reservoir that brought the decrease of storage volume and difficulties of the quality management of water. Until now, the measurement cycle of sediments surveying was long and it was designed to use surveying the degree of sediments, Thus there were many difficult things to secure accuracy. In this study, it was intended to analyze the origin position tracing of sediments and the movement route, for this purpose, aerial LiDAR technology was applied to precise sediments surveying. The amount and location of soil loss were evaluated by classified properties of soil, land-cover, and topographical conditions in detail. Therefore, the reliance could be maintained in analyzing the route of soil loss by extracting the flow within a watercourse and using the advanced accurate DEM.

Effects of ANTORIN R-10 on Ovarian Morphology, Follicular Development and Serum Estradiol Level in Immature Wistar Rats (미성숙 Wistar 랫트에서 ANTORIN R-10이 난소형태, 난포발육 및 혈중 호르몬 농도에 미치는 영향)

  • Kang, Eun-Ju;Yoo, Jae-Gyu;Song, Hye-Jin;Song, Seung-Hee;Rho, Gyu-Jin;Choe, Sang-Yong
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.563-567
    • /
    • 2007
  • This study evaluated the effect of ANTORIN R-10(pFSH), a commercially available follicle stimulating hormone on ovarian morphology, on follicular development and serum estradiol levels in rats. Immature female Wistar S/T rats(27 day old; 80-100 g B.wt) maintained under controlled environmental conditions($22{\pm}2^{\circ}C$; 50% humidity; 12 h light/12 h dark cycle) with free access to standard laboratory feed and tap water were utilized. Animals were allowed to acclimatize to the new environment for at least 2 weeks before being included in the experiment. Rats were randomly allotted to 5 groups(Control, SL 0.1AU, SH 0.2AU, TL 0.1AU and TH 0.2AU). ANTORIN R-10 was subcutaneously injected twice daily for 3 days. Twenty hours after hormone treatment, blood was collected to estimate the serum estradiol $17-\beta$ concentration. Immediately, all rats were sacrificed and the ovarian morphology, ovary weight and number of follicles were recorded. Ovaries were fixed for histomorphological examination. Higher standard and treatment groups were significantly increased on ovary weight and the number of follicles more than 1mm compared with lower standard and treatment. However, no difference revealed between standard and treatment groups. ANTORIN R-10 was similar effects of follicles development and maturation compared with House standard FSH.

Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material (PCM 함유된 축열석고보드의 열환경특성)

  • Kwon, Oh-Hoon;Yun, Huy-Kwan;Han, Seong-Kuk;Ahn, Dae-Hyun;Shim, Myeong-Jin;Cho, Sung-Woon;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.570-574
    • /
    • 2010
  • The main function of conventional insulation materials is only to block the heat transfer and reduce heat loss from the building. On the other hand, thermal storage materials can work as an energy saver by absorbing or emitting heat within a specific temperature range. Thermal storage materials for building can maintain a constant temperature by effectively regulating the cycle of indoor temperature. As a result, we can enhance the performance of a cooling and heating system efficiently. In this study, phase change materials (PCMs) were added as thermal storage materials into gypsum boards which are extensively used for building material and we found out the thermal environmental characteristics. In addition, we checked out some problems when applying the thermal storage materials to buildings. Finally, This study set out to examine the degree of environmental-friendly characteristics of thermal storage building materials by analyzing the amount of TVOC and HCHO contents with the possibility of pollutants emission.

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.