• Title/Summary/Keyword: water corrosion

Search Result 1,443, Processing Time 0.019 seconds

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

Correlation between Corrosion Rate and Red Water on Application of Corrosion Inhibitor in Drinking Water Distribution System (배급수 계통에서 부식억제제 적용에 따른 부식과 적수와의 상관관계)

  • Woo, Dal-Sik;Ku, Sung-Eun;Lee, Byung-Doo;Kim, Ju-Hwan;Moon, Kwang-Soon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.68-77
    • /
    • 2005
  • This study was performed to evaluate the application of corrosion inhibitor and to examine the correlation between corrosion rate and red water in a series of batch tests and a test using auto corrosion monitoring system at A water treatment plant in Gyeonggido. The corrosion study in the auto corrosion monitoring system indicated that Fe concentration decreased by 30~50% and corrosion rate also reduced remarkably with corrosion inhibitor at $1.8mg\;PO_4/L$. After addition of corrosion inhibitor, it was indicated the effective adsorption of the inhibitor on the surface of the pipe line forming a protective film. The corrosion rate increases with the increase in Fe concentration. With $1.8mg\;PO_4/L$ of corrosion inhibitor, the corrosion rate decreased remarkably. Fe concentration had correlation to not only red water problems but also the corrosion rate that actually dissolved into the water, primarily due to the deposition of oxidized iron or other compounds as a scale, which serves as a large reservoir of corrosion by-product. Therefore, corrosion rate can be estimated by Fe concentration. For these reasons, an effective corrosion inhibitor is also an effective red water control reagent. The effect of the corrosion inhibition can last for some time even the application the corrosion inhibitor is discontinued. For the cost effective and efficient corrosion control, the concentration and timing of corrosion inhibitor addition must be determined properly.

Characteristics of Pit Corrosion and Estimation Models of Corrosion Depth in Buried Water Pipes (상수도관의 부식특성과 부식깊이 추정 모델)

  • Kim, Jea-Hag;Ryu, Tae-Sang;Kim, Ju-Hawn;Ha, Sung-ryung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.689-699
    • /
    • 2007
  • The accurate estimation of water pipe deterioration is indispensable to prevent pipe breakage and manage in advance. In this study, corrosion of water pipe is adopted, which is relatively underestimated although it takes most part of deteriorating pipeline. Predicting corrosion rate and corrosion depth of a pipe can make an increase the life span of the pipeline, which is laid under the ground according to characteristics of soil and water corrosion. For the purpose, mathematical models that can presume nominal depth through estimation of pit corrosion and corrosion rate is introduced. As comparison of results with conventional methods in other foreign countries, it is evaluated that the external corrosion depth is estimated less than the models, proposed by other researchers and the internal corrosion rate was processed faster than the external corrosion rate.

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Internal Corrosion Control of Drinking Water Pipes by pH and Alkalinity Control and Corrosion Inhibitor (수질제어 및 부식억제제에 의한 상수도관의 내부부식 제어)

  • Kuh, Sungeun;Woo, Dalsik;Lee, Doojin;Kim, Juwhan;Ahn, Hyowon;Moon, Kwangsoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.215-223
    • /
    • 2006
  • The internal corrosion of water distribution systems is the main cause for the problem of the public health threat as well as water leakage in the damaged pipeline, red water, and odor and taste of the tap water. This study was examined the effect of chemicals used for pH and alkalinity control and corrosion inhibitors for producing the optimal corrosion control method. Corrosion study at different pH and alkalinity indicated that these control using alkaline chemicals was effective in corrosion rate, Fe release reduction, but examined to be increased in turbidity and corrosion-by-products(TTHMs) problems. The turbidity was slightly increased, requiring caution in controlling corrosion with $Ca(OH)_2$. At pH 9.0, TTHMs concentration is increased two times corn pared with non-control of pH. Using the pipe which had experienced 28 years of exposure, iron release was decreased with the corrosion inhibitor. Consequently, pH, Alkalinity control method using alkaline chemicals must be complemented by corrosion inhibitor application for efficient corrosion control.

The Effect of Corrosion Inhibitor on Corrosion Control of Copper Pipe and Green Water Problem

  • Lee, Ji-Eun;Lee, Hyun-Dong;Kim, Gi-Eun
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Concern about green water problem has surfaced as a serious issue in Korea. In order to solve this problem, it is necessary to research inhibition of green water and corrosion control of copper pipe in water service. This paper discovered that moderate corrosion inhibitors can solve the green water problem and copper corrosion in water service by adding the optimal concentration of corrosion inhibitors based on regulation. Firstly, in the case of phosphate based corrosion inhibitors, as dosage of the corrosion inhibitor increases from 1 mg/L to 5 mg/L, the relative effect of corrosion inhibitor declines rapidly. Secondly, except for 1 mg/L dosage of silicate based inhibitor, relative effects of the inhibitor displays a positive number depending on inhibitor concentration. The most significant result is that the amount of copper release shows a downward trend, whereas the phosphate based inhibitor accelerates copper ion release as the inhibitor dosage increases. Thirdly, as the dosage of mixed inhibitors increases to 10 mg/L, the copper release change shows a similar trend of phosphate based inhibitor. Lastly, according to the Langelier saturation index (LI), silicate based inhibitors have the most non corrosive value. Larson ratio (LR) indicates that phosphate based inhibitors are the least corrosive. Korea water index (KWI) represents that silicate based inhibitors are most effective in controlling copper pipe corrosion.

Corrosion control of drinking water pipes by corrosion inhibitor (부식억제제에 의한 상수도관의 부식제어)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2306-2310
    • /
    • 2010
  • Corrosion is a complex series of oxidation/reduction reactions between at the water-metal surfaces and materials in which the water is stored or transported. With respect to the corrosion potential of drinking water, the primary concerns include the potential presence of toxic metals, such as lead and copper; deterioration and damage to the household plumbing, and aesthetic problems such as stained laundry, and bitter taste. This study was performed to evaluate the effects of corrosion inhibitors on corrosion rates, Fe and Cu release concentration in water distribution pipes. Decrease of corrosion rates were strongly related to phosphate corrosion inhibitors. Considering that typical corrosion processes consists of a series of electrochemical reaction at the metal surface in contact with water, corrosion rates were positively correlated with Fe release.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Effect of corrosive water quality control and corrosion index monitoring in pilot scale pipeline simulator (파일럿 규모 모의관로에서 부식성 수질제어 효과와 부식지수 모니터링)

  • Kim, Do-Hwan;Kim, Yung-Jin;Son, Hee-Jong;Ryou, Dong-Choon;Ahn, Jun-Young;Kim, Cheolyong;Hwang, In-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • Applicability of corrosion inhibitor was evaluated using pilot scale water distribution pipe simulator. Calcium hydroxide was used as corrosion inhibitor and the corrosion indices of the water were investigated. Corrosion indices, Langelier saturation index (LI) increased by 0.8 and calcium carbonate precipitation potential (CCPP) increased by 9.8 mg/L. This indicated that corrosivity of water decreased by corrosion inhibitor and the effects lasted for 18 days. Optimum calcium hydroxide dose was found to be 3~5 mg/L for corrosion inhibition. We suggest that monitoring of CCPP as well as LI need to be conducted to control corrosivity of water.

Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test (가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.