• Title/Summary/Keyword: water blending

Search Result 227, Processing Time 0.028 seconds

Vapor Sorption Property of Charcoal-based Loess Composites (숯과 황토 복합소재의 흡착성능)

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • The purpose of this study was to evaluate the relationships between the mixing ratio and water vapor sorption property of charcoal-based loess composites for furniture & building materials with environmental friendly. Charcoal-based loess composite can be easily made by blending method with water. But the composites had much brittle fracture pattern with the increase of charcoal content. That is due to the lack of loess that takes linkage role of composites. In water vapor sorption properties, adsorption ability of charcoal was about six times higher than that of loess. Therefore, vapor sorption ability was maximum at the mixture ratio of charcoal 80% and loess 20%. It is considered that wood charcoal based inorganic composite materials can be used for various purposes as a building interior & exterior and furniture members.

  • PDF

Electrical and Physical Properties of XLPE/EnBA Blends (XLPE/EnBA 블렌드의 전기 및 물리적 성질)

  • 서광석;오우정;이승형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1060-1069
    • /
    • 1998
  • Electrical properties such as space charge accumulation and water tree length and physical properties such as tensile strength, elongation and degree of crosslinked polyethylene (XLPE)/ethylene n-butyl acrylate copolymer (EnBA) blends were investigated. It was found that electrical properties such as water tree length grown at a specific condition and AC breakdown strength are improved by blending the XLPE with EnBA. The EnBA having higher nBA content showed the better electrical properties in XLPE/EnBA blends. A further improvement of these properties was achieved when a small amount of crosslinking coagent was used in the preparation of XLPE/EnBA blends.

  • PDF

Evaluation of Long-Term Performance of Concrete Blended with Industrial Waste(Oyster Shell) (산업폐기물(굴패각)을 혼입한 콘크리트의 장기성능 평가)

  • 김학모;양은익;이성태;정용일;최중철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.227-232
    • /
    • 2002
  • To evaluate the practical application of oyster shells as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells Is appreciably lower than that of normal concrete. 1'hereby, concrete with higher oyster shell has the possibility giving a bad influence on the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture ratio increases. Namely, the modulus is reduced by approximately 10∼15% when oyster shells are blended up to 20% replacing the fine aggregate. The drying shrinkage strain increases as the blending ratio increases. In addition, the existing model code of drying shrinkage does not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on freezing and thawing resistance, carbonation and sulfuric acid attack of concrete recycling. However, water permeability is considerably improved.

  • PDF

Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications (폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향)

  • Ezzati, Peyman;Ghasemi, Ismaeil;Karrabi, Mohammad;Azizi, Hamed;Fortelny, Ivan
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Ternary blends of poly(L-lactic acid) (PLLA), poly(${\varepsilon}$-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (${\rho}^*$) to the non-porous material density (${\rho}_s$). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Production of Environment-Friendly Coated Paper with PCC Manufactured with Emission Gas (배기가스로 제조한 PCC를 이용한 친환경 도공지 제조)

  • Shin, Gil Jae;Won, Jong Myoung;Lee, Yong Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.36-43
    • /
    • 2013
  • Effects of blending of PCC manufactured with emission gas occurred at mill on the characteristics of coating color, optical and printing properties of coated paper were investigated in order to evaluate the possibility of its use as a raw material for producing environmentally friendly coated paper. Low shear viscosity and water retention value of ground PCC 1(d50 = $6.303{\mu}m$) were higher than those of ground PCC 2(d50 = $3.149{\mu}m$). Ink set properties of ground PCC 1 and ground PCC 2 were inferior to that of PCC 3. Thus, the reducing of particle size was required in order to overcome the inferior ink set properties. Ground PCC 1 had a similar properties to clay, and it showed the possibility that ground PCC 1 could be used to produce matte grade coated papers. However, it was required to improve the stability(particle shape, particle size, and compatibility with chemicals used in coating color formulation) in the case of blending with GCC in order to keep the qualities of coated paper.

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Studies on the Dimensional Stabilization of Wood -Especially by the Solution of Different Composition by PEG Molecular Weight- (목재(木材)의 치수 안정화(安定化)에 관(關)한 연구(硏究) -Polyethylene Glycol의 혼합액(混合液)을 중심(中心)으로-)

  • Oh, Joung Soo;Cheon, Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.119-126
    • /
    • 1987
  • This study was carried out to elucidate the desirable PEG molecular weight and it's blending methods which can promote the dimensional stabilization of Corpus controversa, Quercus variabilis and Prunus sargentii. The results may be summarized as follows: 1. PEG polymer loading in woods was affected by specific gravity of wood. And the PEG polymer loading was satisfactory except in Quercus variabilis, which shows the blending method of PEG V was proper. 2. Bulking coefficiency of PEG V was high in Corpus controversa and Prunus sargentii, and it is necessary to paint or coat water-proofing wood preservative: for high bulking coefficiency of Quercus variabilis. 3. In the treatment of PEG V, the antishrink efficiency of Prunus sargentii was 82.59% and that of Quercus variabilis 62.79%. 4. Dimensional stabilization of hardwoods did not have apparant relation with PEG blending method. 5. Judging from results, PEG-400 and PEG-1000 would be enough for dimensional stabilization of hardwood having high specific gravity if other factors are considered well.

  • PDF

Optimum Physical Property of Media for the Production of Small Potted Ardisia in Capillary Mat Irrigation System (매트재배에서 Ardisia 소형분화 생산에 적합한 배지의 물리성)

  • Lee, Dong-Soo;Kwon, Oh-Keun;Lee, Young-Ran;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.316-325
    • /
    • 2009
  • Adequate conditions of water content and aeration of container media are major environmental factors in the production of pot plant. This experiment was carried out to find optimum physical property of media for the production of small potted Ardisia in capillary mat irrigation system. The plant materials used in this experiment were Ardisia pusilla and Ardisia japonica. Seven substrates were formulated by blending perlite or fresh rice hulls at 20%, 40%, 60% (v/v) with sphagnum peat. Total pore space (TPS) increased by blending sphagnum peat with fresh rice hulls, but decreased by blending sphagnum peat with perlite. As fresh rice hull (FRH) and perlite content increased, air filled pore space (AFP) of substrate increased but container capacity (CC) decreased. Substrate blended with fresh rice hull was higher AFP than blended with perlite and the rate of increase was higher for FRH-containing substrate. As AFP increased, the $CO_2$ concentration in the pot decreased and the $CO_2$ concentration of substrate blended with FRH was higher than blended with perlite. The fresh and dry weight of Ardisia pusilla and A. japonica was the highest in the substrate contained 60% FRH, but the ratio of shoot dry weight to root dry weight was the lowest. The optimum total pore space, air-filled pore space, water holding capacity of substrate for the growth of Ardisia pusilla and A. japonica in the capillary mat irrigation system were 82.8%, 25.6%, and 57.2% respectively.

Improvement of Cooking Properties by Milling and Blending in Rice Cultivar Goami2 (도정 및 품종혼합에 의한 고아미2호의 취반특성)

  • Chun Areum;Song Jin;Hong Ha-Cheol;Son Jong-Rok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.88-93
    • /
    • 2005
  • The functional vice (Oryza sativa L.) has been highly regarded recently, in the change of rice maykets in the world. Goami2 (GA), one of the functional rice varieties, was developed from high-quality rice, Ilpumbyeo (IP). From the previous study, GA has been proved its beneficial effect on the improvement of metabolic control and body weight reduction especially in obesity, We could certain that GA was very difficult to be gelatinized due to the micro lump shown in the Scanning electron micrographs (SEM) photos. To improve its cooking quality, we investigated the changes of physicochemical properties, which were differentiated by the conditions of milling and blending. As GA was milled every $2\%$ until eliminating $12\%$, the nitrogen content was decreased linearly. But the decreasing rate of nitrogen content of GA during milling process was relatively lower than that of IP. Thus, we assumed that GA has relatively high nitrogen in inner starch of grain. The degree of milling had no effect on the gelatinization of cooked GA, but affected lightness and whiteness linearly, which were ranged in normal values when the rice was milled more than $10\%$ in weight. So we could concluded that the milling process was not proper to improve cooking quality of GA. And we could suggested that GA was needed to soak into water at least one hour before cooking by it water absorption rate at normal temperature$(21^{\circ}C)$ and sensory evaluation. From the texture analysis, cooked GA had higher hardness than other varieties. Therefore, we blended GA with IP, Baekjinju(BJ) and Hwasunchalbyeo(HS), then subjected to sensory evaluation. All evaluation items including the sensory preference were the highest scores for the rice blended with glutinous rice varieties, BJ and HS.