DOI QR코드

DOI QR Code

Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications

폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향

  • Ezzati, Peyman (Processing Faculty, Iran Polymer and Petrochemical Institute) ;
  • Ghasemi, Ismaeil (Processing Faculty, Iran Polymer and Petrochemical Institute) ;
  • Karrabi, Mohammad (Processing Faculty, Iran Polymer and Petrochemical Institute) ;
  • Azizi, Hamed (Processing Faculty, Iran Polymer and Petrochemical Institute) ;
  • Fortelny, Ivan (Institute of Macromolecular Chemistry AS CR)
  • Received : 2013.12.14
  • Accepted : 2014.03.10
  • Published : 2014.07.25

Abstract

Ternary blends of poly(L-lactic acid) (PLLA), poly(${\varepsilon}$-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (${\rho}^*$) to the non-porous material density (${\rho}_s$). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Keywords

References

  1. I. Fortelny, J. Juza, and B. Dimzoski, Eur. Polym. J., 48, 1230 (2012). https://doi.org/10.1016/j.eurpolymj.2012.04.017
  2. P. Ezzati, I. Ghasemi, M. Karrabi, and H. Azizi, Iran Polym. J., 17, 265 (2008).
  3. S. H. Shokoohi and A. Arefazar, Polym. Adv. Technol., 20, 433 (2009). https://doi.org/10.1002/pat.1310
  4. P. Sarazin, G. Li, W. J. Orts, and B. D. Favis, Polymer, 49, 599 (2008). https://doi.org/10.1016/j.polymer.2007.11.029
  5. I. Fortelny, M. Lapcikova, J. Mikesova, and J. Juza, J. Polym. Sci., Part B: Polym. Phys., 47, 2158 (2009). https://doi.org/10.1002/polb.21825
  6. N. Virgilio, P. Desjardins, G. L'Esperance, and B. D. Favis, Polymer, 51, 1472 (2010). https://doi.org/10.1016/j.polymer.2010.01.017
  7. K. H. A. Aamer, H. Sardinha, and S. R. Bhatia, Biomaterials, 25, 1087 (2004). https://doi.org/10.1016/S0142-9612(03)00632-X
  8. I. Luzinov, C. Pagnoulle, and R. Jerome, Polymer, 41, 3381 (2000). https://doi.org/10.1016/S0032-3861(99)00514-5
  9. S. Torza and S. G. Mason, J. Colloid Interface Sci., 33, 67 (1970). https://doi.org/10.1016/0021-9797(70)90073-1
  10. N. Virgilio, P. Sarazin, and B. D. Favis, Biomaterials, 31, 5719 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.071
  11. P. Le Corroller and B. D. Favis, Polymer, 52, 3827 (2011). https://doi.org/10.1016/j.polymer.2011.06.032
  12. S. Ravati and B. D. Favis, Polymer, 52, 718 (2011). https://doi.org/10.1016/j.polymer.2010.12.005
  13. S. Y. Hobbs, M. E. J. Dekkers, and V. H. Watkins, Polymer, 29, 1598 (1988). https://doi.org/10.1016/0032-3861(88)90269-8
  14. S. Ravati and B. D. Favis, Polymer, 51, 4547 (2010). https://doi.org/10.1016/j.polymer.2010.07.014
  15. J. Reignier and B. D. Favis, Macromolecules, 33, 6998 (2000). https://doi.org/10.1021/ma991954g
  16. J. Zhang, S. Ravati, N. Virgilio, and B. D. Favis, Macromolecules, 40, 8817 (2007). https://doi.org/10.1021/ma0716480
  17. T. S. Omonov, C. Harrats, and G. Groeninckx, Polymer, 46, 12322 (2005). https://doi.org/10.1016/j.polymer.2005.10.022
  18. H. F. Guo, N. V. Gvozdic, and D. J. Meier, Polymer, 38, 4915 (1997). https://doi.org/10.1016/S0032-3861(97)00011-6
  19. H. F. Guo, S. Packirisamy, N. V. Gvozdic, and D. J. Meier, Polymer, 38, 785 (1997). https://doi.org/10.1016/S0032-3861(96)00571-X
  20. Y. Koseki, M. S. Lee, and C. W. Macosko, Rubber Chem. Technol., 72, 109 (1998).
  21. J. Reignier, B. D. Favis, and M. C. Heuzey, Polymer, 44, 49 (2003). https://doi.org/10.1016/S0032-3861(02)00684-5
  22. G. Maglio, M. Malinconico, A. Migliozzi, and G. Groeninckx, Macromol. Chem. Phys., 205, 946 (2004). https://doi.org/10.1002/macp.200300150
  23. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Int. J. Polym. Sci., 1, 1 (2011).
  24. W. Y. Ahn, H. L. Kim, J. E. Song, D. Lee, and G. Khang, Polymer(Korea), 35, 499 (2011).
  25. A. Y. Oh, S. H. Kim, S. J. Lee, J. J. Yoo, M. van Dyke, J. M. Rhee, and G. Khang, Polymer(Korea), 32, 403 (2008).
  26. Y. Kodama, L. D. B. Machado, C. Giovedi, and K. Nakayama, Nucle. Instrum. Method. Phys. Res. B, 265, 294 (2007). https://doi.org/10.1016/j.nimb.2007.08.062
  27. R. D. Erba, G. Groeninckx, G. Maglio, M. Malinconico, and A. Migliozzi, Polymer, 42, 7831 (2001). https://doi.org/10.1016/S0032-3861(01)00269-5
  28. M. Todo, J. E. Park, H. Kuraoka, J. W. Kim, K. Taki, and M. Ohshima, J. Mater. Sci., 44, 4191 (2009). https://doi.org/10.1007/s10853-009-3546-0
  29. M. Todo, S. D. Park, T. Takayama, and K. Arakawa, Eng. Fract. Mech., 74, 1872 (2007). https://doi.org/10.1016/j.engfracmech.2006.05.021
  30. W. Zhang, D. Yao, Q. Zhang, J. Zhou, and P. Lelkes, Biofabrication, 2, 1 (2010).
  31. T. Tanaka, S. Eguchi, H. Saitoha, M. Taniguchi, and D. R. Lloyd, Desalination, 234, 175 (2008). https://doi.org/10.1016/j.desal.2007.09.084
  32. A. J. Salgado, O. P. Coutinho, and R. L. Reis, Macromol. Biosci., 4, 743 (2004). https://doi.org/10.1002/mabi.200400026
  33. H. R. I. Khasim, S. Henning, G. H. Michler, and J. Brand, Macromol. Symp., 294, 144 (2010). https://doi.org/10.1002/masy.201050813
  34. A. G. Mikos and J. S. Temenoff, Electron. J. Biotechnol., 3, 1 (2000).
  35. J. Reignier and M. A. Huneault., Polymer, 47, 4703 (2006). https://doi.org/10.1016/j.polymer.2006.04.029
  36. P. Sarazin, X. Roy, and B. D. Favis, Biomaterials, 25, 5965 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.065
  37. M. H. Hoa, P. Y. Kuoa, H. J. Hsieha, T. Y. Hsienb, L. T. Houc, J. Y. Laid, and D. M. Wang, Biomaterials, 25, 129 (2004). https://doi.org/10.1016/S0142-9612(03)00483-6
  38. H. Tsuji, G. Horikawa, and S. H. Itsuno, J. Appl. Polym. Sci., 104, 831 (2007). https://doi.org/10.1002/app.25602
  39. D. Pinoit and R. E. Prudhomme, Polymer, 43, 2121 (2003).
  40. S. Gomari, I. Ghasemi, M. Karrabi, and H. Azizi, J. Polym. Res., 19, 1 (2012). https://doi.org/10.1007/s10965-012-0001-8
  41. M. Lewin, A. M. Marom, and R. Frank, Polym. Adv. Technol., 16, 429 (2005). https://doi.org/10.1002/pat.605
  42. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 5849 (1996). https://doi.org/10.1016/S0032-3861(96)00455-7
  43. Sh. W. Kuo, Ch. F. Huang, Y. Ch. Tung, and F. Ch. Chang, J. Appl. Polym. Sci., 100, 1146 (2006). https://doi.org/10.1002/app.23227
  44. T. Jurkin and I. Pucic, Radiat. Phys. Chem., 81, 1303 (2012). https://doi.org/10.1016/j.radphyschem.2011.12.021
  45. V. Ojijo, Th. Malwela, S. S. Ray, and R. Sadiku, Polymer, 53, 505 (2012). https://doi.org/10.1016/j.polymer.2011.12.007
  46. M. Wang, Am. J. Biochem. Biotechnol., 2, 80 (2006). https://doi.org/10.3844/ajbbsp.2006.80.84

Cited by

  1. Evaluation of the effects of prepared antibacterial multilayer film on the quality and shelf-life stability of chilled meat vol.41, pp.5, 2017, https://doi.org/10.1111/jfpp.13151