• 제목/요약/키워드: water absorption coefficients

검색결과 94건 처리시간 0.028초

복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성 (Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments)

  • 김무한;권영진;김용로;김재환;장종호;조봉석
    • 한국건축시공학회지
    • /
    • 제4권1호
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.

수냉식 수직평판 흡수기의 액막 열 및 물질전달에 관한 수치적 연구 (Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber)

  • ;문춘근;김은필;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.593-602
    • /
    • 2004
  • This paper is a study on the model of simultaneous heat and mass transfer process in the absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. The model can predict temperature and concentration profiles as well as the effect of Reynolds number on them. Also. the variations of the absorption heat and mass fluxes. and the heat and mass transfer coefficients have been investigated. The numerical result shows that the interface temperature and concentration decrease as film Reynolds number does. The absorption heat and mass fluxes, and the heat and mass transfer coefficients get their maximum values adjacent to the inlet solution. Analyses on a constant wall temperature condition have been also carried out to exam the reliability of the present numerical method by comparing to previous investigations.

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

Capillary Water Absorption Properties of Steel Fiber Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles

  • Qiu, Jisheng;Zheng, Juanjuan;Guan, Xiao;Pan, Du;Zhang, Chenghua
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.451-458
    • /
    • 2017
  • The service life of coal gangue concrete(CGC) strongly depends on the capillary water absorption, this water absorption is susceptible to freeze-thaw cycles. In this paper, the cumulative water absorption and sorptivity were obtained to study the effects of 0, 0.5, 1.0, and 1.5 % steel fiber volume fraction added on the water absorption of CGC. Sorptivity and freeze-thaw tests were conducted, and the capillary water absorption was evaluated by the rate of water absorption(sorptivity). Three prediction models for the initial sorptivity of steel fiber reinforced coal gangue concrete(SFRCGC) under freeze-thaw cycles were established to evaluate the capillary water absorption of SFRCGC. Results showed that, without freeze-thaw cycles, the water absorption of CGC decreased when steel fiber at 1.0 % volume fraction was added, however, the water absorption increased with the addition of 0.5 or 1.5 % steel fibers. Once the SFRCGC specimens were exposed to freeze-thaw cycles, the water absorption of SFRCGC significantly increased, and 1.0 % steel fiber in volume fraction added to CGC caused the lowest water absorption, except for the case of the sample without steel fibers added. The CGC with steel fiber at 1.0 % volume fraction performed better. The SFRCGC has a strong response to freeze-thaw cycles. Results also showed that the linear function prediction model is practical in the field of engineering because of its simple form and a relatively high precision. Although the polynomial prediction model presents the highest computation precision among the three models, the complicated form and too many coefficients make it impractical for engineering applications.

칼리머 증기발생기에서 물-소듐 반응에 의한 소음 발생과 수소 기포의 소음 흡수 (Noise Generation by Water-Sodium Reaction and its Absorption on Hydrogen Bubbles for KALIMER Steam Generator)

  • 김태준;;황성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1829-1835
    • /
    • 2000
  • The experimental results of sodium-water reaction noise measurement in frequency range $1{/sim}200kHz$ are presented. The experiments of noise generation under the condition of sodium test facility, water leak rate $0.01{\sim}1.2g/s$ and temperature of sodium $250{\sim}500^{\circ}C$, were carried out. From theoretical study it is noted that the noise resonant attenuation on hydrogen bubbles in liquid sodium plays the significant role for leak noise spectra formation. Interaction of leak noise and hydrogen bubbles in sodium being accompanied by thermal, emission and viscosity energy dissipation was studied. Acoustic noise spectra were investigated from point of view of water leak detection in sodium/water steam generator. The results of sodium-water reaction noise absorption on hydrogen bubbles in liquid sodium by temperature $250{\sim}500^{\circ}C$ are presented. The theoretical model of noise absorption using the coefficients of attenuation was developed. From calculation the coefficients of attenuation were estimated.

  • PDF

수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性) (제(第) 1 보(報), 흡수특성(吸收特性)) (Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical inner Tube (1st Report, Characteristics of Absorption))

  • 엄기찬;백목 효부;서정윤
    • 설비공학논문집
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 1993
  • Mass transfer coefficients were measured for water vapor absorption into a LiBr-Water solution of 60wt% flowing down an absorber of vertical tube type. The absorber is copper tube of 25mm inner diameter and 1000mm length. The film Reynolds number were varied in the range of 35~130. The solution is fed from the top of the pipe, and the conditions of solution are supercooled liquid and superheated liquid. As results, the flowrates of LiBr solution which takes peak value of average absorption mass flux exist. Mass transfer coefficients decrease with increasing the flowrate of LiBr solution, and the decrease rate in the case of supercooled liquid is large as compared with that in the case of superheated liquid. But the absorption rate of supercooled liquid is decidedly superior to that of superheated liquid.

  • PDF

증발산 장기 관측에 따른 크립톤 습도계의 흡수 계수의 변화와 이슬점 생성기를 이용한 기기 보정 (Changes in Absorption Coefficient of Krypton Hygrometer in Long-term Monitoring of Evapotranspiration and Its Calibration Using a Dew Point Generator)

  • 박윤호;김준;이희춘;임종환;권원태
    • 한국농림기상학회지
    • /
    • 제2권3호
    • /
    • pp.75-79
    • /
    • 2000
  • Calibrations of fast-response krypton hygrometers were carried out using a dew-point hygrometer to investigate the changes in their absorption coefficients due to long-term field operation. Absorption coefficients changed proportionally with the number of hours of field operation. The increase in absorption coefficient indicates that the water vapor flux, calculated with the original absorption coefficient, would underestimate the true flux in the field. To minimize the uncertainty in quantifying evapotranspiration and surface energy budget studies, frequent calibrations (for example, every 1500 hours of field operation) of krypton hygrometer are recommended.

  • PDF

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF

흡수식 2중효용 시스템의 증발기 열원으로 태양열을 이용하는 LiCl 수용액 난방시스템 해석 (Analysis of Thermodynamic Design Data of Double-Effect Absorption System for Heating using LiCl-water for Evaporator Heating Source of Solar Energy)

  • 원승호
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, thermodynamic design data for heating of double-effect absorption system using LiCl-water for evaporator heating source of sofar energy are investigated for the water-LiCl pair and a comparative study of the water-LiCl pair with the water-LiBr pair is given used for the computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water -LiCl pair than for the water-LiBr pair, and FR is lower for the water-LiCl pair than for the water LiBr pair.

증발기 열원으로 태양열을 이용하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석 (Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr-LiSCN Solution with Solar Evaporator Heating)

  • 원승호
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.27-35
    • /
    • 2005
  • In this paper, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system with water-LiBr-LiSCN mixture which utilizes solar energy as evaporator heat source. In addition, a comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.