• Title/Summary/Keyword: water/cement ratio

Search Result 1,136, Processing Time 0.025 seconds

Analysis of Viscosity and Bleeding Characteristics of Grouting Materials according to the Proportion of Bentonite (벤토나이트 함량에 따른 지반 그라우팅 재료의 점성 및 블리딩 특성 분석)

  • Lee, Jong-Won;Weon, Jo-Hyun;Choi, Hyeon-Yong;Oh, Tae-Min
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.127-137
    • /
    • 2021
  • Grouting has been widely used to enhance the strength of the ground and prevent waterflow into the underground space in the geotechnical engineering field. Cement with bentonite can be considered a helpful grouting material because the bentonite has a swelling ability with water. Therefore, it is essential to evaluate the characteristics of grouting materials according to the mixing ratio for a successful grouting process. In this regard, the study investigated the viscosity and bleeding characteristics of grouting materials according to the mixing ratio (i.e., water/cement ratio and bentonite/cement ratio). In the experimental result, the viscosity increases with decreasing water/cement ratio and rising proportion of bentonite by weight of cement. However, the results of the bleeding ratio show the tendency is inversely proportional to the viscosity results. Bentonite was explored in terms of the viscosity and bleeding criterion. This result is expected to be meaningful to determine the optimized mixing ratio of bentonite-cement in the grouting field.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Mechanical Properties of Strain-Hardening Cement Composites(SHCCs) according to the Water-Cement Ratio (물시멘트비에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Kim, Yun-Su;Jang, Yong-Heon;Jang, Gwang-Su;Jeon, Esther;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.465-468
    • /
    • 2008
  • SHCCs (Strain Hardening Cement Composites) show the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCCs, it is needed to investigate the compression, four-point bending, direct tensile response of SHCCs with different types of fibers and water-cement ratio. For these purposes, three kinds of fibers were used: PP(polypropylene, 2.0%), PVA(Polyvinyl alcohol, 2.0%), PE (Polyethylene, 1.0%). Also, effects of water-cement ratio(0.45, 0.60) on the SHCCs were evaluated in this paper. As the result of test, SHCCs with PVA and PE fiber were showed better overall behavior than specimens with PP fibers on bending and direct tensile test. Also, for the same type of fiber, SHCCs with water-cement ratio of 0.45 exhibited higher ultimate strength than specimen with water-cement ratio of 0.60 on compression strength, and showed the multiple cracking on bending and direct tensile test. Therefore, to improve of workability and dispersibility of SHCCs on water-cement ratio of 0.60, continual studies were needed.

  • PDF

A Study on the Dry-Shrinkage Properties For Floor Mortar With Crack-Reducing (균열저감형 바닥마감전용 모르터의 건조수축특성 연구)

  • 이종렬;이웅종;채재홍;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.175-180
    • /
    • 1999
  • The heating system of korea apartment house is called Ondol. The surface finishing mortar of this floor system typically used the cement based mortar, where the surface finishing mortar easily appears the crack. To order to crack control, the cement that added expansive additive used to reducing dry-shrinkage. For the surface finishing mortar, the types of shrinkage is known as plastic shrinkage, dry-shrinkage and autogenous This experimental study is to investigate the difference on dry-shrinkage of the cement that added expansive additives and OPC. The test method is varied the ration of water/cement (W/C) and the ratio of sand/cement(S/C). For OPC, The increase of the ratio of S/C is reduced dry-shirnkage but for the cement that added expansive additives, the increase of the ratio of S/C is augmented dry-shrinkage For OPC, The increase of the ratio of W/C is augmented dry-shrinkage but for the cement that added expensive, the increased of the ratio of W/C is reduced dry-shrinkage.

  • PDF

The Characteristics of Mortar According to the Water Cement Ratio and Mudflats Replacement Ratio (물-시멘트비 및 갯벌 치환율에 따른 모르타르의 특성)

  • Yang, Seong-Hwan;Lee, Heung-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This research analyzes the properties of mortar following the rise in water-cement ratio and applicability as an eco-friendly construction supply by using the mudflats of a dredged arena as a substitute for aggregate. The results of a experiment of the flow showed that the flow value decreases as the amount of mudflats increases. A test for chloride content showed that the chloride content increases with the amount of mudflats. In the compression of specimen mixed with mudflat and the testing of tensile strength, the strength weakened as the addition ratio of mudflats rose. However, with 14-day strength as the standard, most specimen showed more strength than the plain, and 14-day strength was higher than 28-day strength. It appears to be experimental error in the mixing process from the viscosity and cohesion of mudflats, and it is considered that there will be a need for an experiment on mixing methods of mudflats in the future. The compressive strength of this research was the strongest with 70% in water-cement ratio, and the tensile strength was strongest with 80% in water-cement ratio. In the evaluation of surface analysis, 70% water-cement ratio, which is finest in strength, mixing, and compactness, was selected to analyze the roughness of the surface, and the results showed that the surface became smoother as the addition ratio of mudflats increases. In conclusion, it appears that 70% water-cement ratio is the optimal mixing ratio for mortar and 10 to 30% addition ratio of mudflats the optimal ratio. It also appears that the application of interior finishing material like bricks and tiles and interior plastering material using the mudflats are possible.

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

Properties of Flowable High-volume Fly Ash-Cement Composites (다량의 플라이애쉬를 사용한 유동성 시멘트복합체의 특성)

  • 원종필;신유길;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.105-110
    • /
    • 1998
  • The purpose of this was to examine the used of fly ash as a type of construction material. In this paper the results from a recent study on development of a cement composite utilizing relatively large amount of fly ash are presented. The flowable fly ash-cement sand composite was investigated for strength and flowability characteristics. The independent variable considered were: fly-ash content, sand content, and ratio of water to cementitious materials. Results of this study show that high volume fly-ash composite can be proportioned to obtain 10~15kg/$\textrm{cm}^2$ compressive strength at 28 days. For applications requiring strength between 10kg/$\textrm{cm}^2$ and 15kg/$\textrm{cm}^2$, the mixture with fly ash-cement ratio of 5.6 and sand-cement ratio of 28 with relatively high water content may be used. Slump was held at 25$\pm$1cm for all mixtures produced compressive strength at 28 days were found to range from 5kg/$\textrm{cm}^2$ to 13.7kg/$\textrm{cm}^2$.

  • PDF

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

The effects of different cement dosages, slumps and pumice aggregate ratios on the freezing and thawing of concrete

  • Turkmen, Ibrahim;Demirboga, Ramazan;Gul, Rustem
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.163-175
    • /
    • 2006
  • This research was conducted to determine effect of pumice aggregate ratio, cement dosage and slumps on freeze-thaw resistance, density, water absorption and elasticity of concrete. In the first batch, $300kg/m^3$ cement dosage were kept constant and pumice ratios were changed as 25%, 50%, 75% and 100% of replacement for normal aggregate by volume for $3{\pm}1cm$, $5{\pm}1cm$ and $7{\pm}1cm$ slumps. Other batches were prepared with $200kg/m^3$, $250kg/m^3$, $350kg/m^3$, $400kg/m^3$ and $500kg/m^3$ cement dosages and 25% pumice aggregate +75% normal aggregate at a constant slump. Test results showed that when pumice-aggregate ratio decreased the density and freeze-thaw resistance of concretes increased. With increasing of cement dosage in the mixtures, density of the concretes increased, however, freeze-thaw resistance of concretes decreased. Water absorption of the concrete decreased with increasing cement dosage but increased with the pumice ratio. Water absorption of the concrete also decreased after freeze-thaw cycles. Freeze-thaw resistance of concretes was decreased with increasing the slumps.