DOI QR코드

DOI QR Code

Analysis of Viscosity and Bleeding Characteristics of Grouting Materials according to the Proportion of Bentonite

벤토나이트 함량에 따른 지반 그라우팅 재료의 점성 및 블리딩 특성 분석

  • 이종원 (부산대학교 사회환경시스템공학과) ;
  • 원조현 (부산대학교 사회환경시스템공학과) ;
  • 최현용 (부산대학교 사회환경시스템공학과) ;
  • 오태민 (부산대학교 사회환경시스템공학과)
  • Received : 2021.11.10
  • Accepted : 2021.12.04
  • Published : 2021.12.30

Abstract

Grouting has been widely used to enhance the strength of the ground and prevent waterflow into the underground space in the geotechnical engineering field. Cement with bentonite can be considered a helpful grouting material because the bentonite has a swelling ability with water. Therefore, it is essential to evaluate the characteristics of grouting materials according to the mixing ratio for a successful grouting process. In this regard, the study investigated the viscosity and bleeding characteristics of grouting materials according to the mixing ratio (i.e., water/cement ratio and bentonite/cement ratio). In the experimental result, the viscosity increases with decreasing water/cement ratio and rising proportion of bentonite by weight of cement. However, the results of the bleeding ratio show the tendency is inversely proportional to the viscosity results. Bentonite was explored in terms of the viscosity and bleeding criterion. This result is expected to be meaningful to determine the optimized mixing ratio of bentonite-cement in the grouting field.

그라우팅 공법은 지반 내 토목구조물 활용 시 지반 강도특성을 증진시키거나 지하공간 활용 시 차수효과를 위하여 활발하게 적용되고 있다. 최근에는 그라우팅 기밀특성을 향상시키기 위하여 벤토나이트가 시멘트 재료와 함께 활용되고 있다. 이러한 벤토나이트-시멘트 그라우팅 재료의 원활한 주입을 위해서는 주입재료의 배합비율에 따른 특성을 사전에 파악하는 것이 중요하다. 본 연구에서는 그라우팅 재료로 주로 활용되고 있는 1종 보통 포틀랜드 시멘트와 벤토나이트를 이용하여 물/시멘트 배합비율 및 벤토나이트 함량에 따른 점성도 및 블리딩 발생비율을 분석하였다. 실험결과, 물/시멘트 배합비율이 감소하거나 벤토나이트 함량이 증가할수록 점성도는 급격히 증가하고 블리딩 비율은 감소하는 반비례 경향을 보였다. 또한, 적합한 재료 선정 기준에 따라 물/시멘트 배합비율 따른 적용가능한 벤토나이트 함량을 선정하였다. 본 연구에서 분석한 벤토나이트-시멘트 그라우팅 재료의 평가 결과는 향후 지반 내 적합한 그라우팅 재료 선정을 위하여 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 한국연구재단 4단계 BK21 사업의 스마트 해양도시 인프라 교육연구단 과제를 통해 수행된 연구결과임(4199990614525).

References

  1. 사공명.이준석.박정준.조충식(2018), "강관다단공법에 적용되는 씰링재(벤토나이트-시멘트 슬러리)의 점성 특성에 대한 실험", 「한국터널지하공간학회 논문집」, 20(5): 773-786. https://doi.org/10.9711/KTAJ.2018.20.5.773
  2. 이철호.위지혜.박문서.최항석.손병후(2010), "지중 열교환기용 벤토나이트 뒤채움재의 화학적, 물리적 영향 요소에 관한 연구", 「한국지반공학회논문집」, 26(12): 19-30.
  3. 최항석.이철호.길후정.최효범.우상백(2007), "수직 밀폐형 자중 열교환기용 뒤채움재의 열전도 및 점도 특성 연구", 「신재생에너지」, 3(4): 38-46.
  4. Alyousef, R., M. A. Khadimallah, C. Soussi, O. Benjeddou and M. Jedidi (2018), "Experimental and Theoretical Study of a New Technique for Mixing Self-Compacting Concrete with Marble Sludge Grout", Advances in Civil Engineering, 2018: 3283451.
  5. ASTM (2016), "Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for PreplacedAggregate Concrete in the Laboratory", ASTM International.
  6. ASTM (2020), "Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer", ASTM International.
  7. Atahan, H. N., O. N. Oktar and M. A. Tasdemir (2009), "Effects of Water-Cement Ratio and Curing Time on the Critical Pore Width of Hardened Cement Paste", Construction and Building Materials, 23(3): 1196-1200. https://doi.org/10.1016/j.conbuildmat.2008.08.011
  8. Azadi, M. R., A. Taghichian and A. Taheri (2017), "Optimization of Cement-Based Grouts Using Chemical Additives", Journal of Rock Mechanics and Geotechnical Engineering, 9(4): 623-637. https://doi.org/10.1016/j.jrmge.2016.11.013
  9. Benyounes, K. and A. Benmounah (2014), "Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer", International Journal of Civil, Architectural, Structural and Construction Engineering, 8(11): 1095-1098.
  10. Contreras, I. A., A. T. Grosser and R. H. Ver Strate (2007), "The Use of the Fully-Grouted Method for Piezometer Installation", 7th FMGM 2007: Field Measurements in Geomechanics, 1-20.
  11. Draganovic, A. (2009), "Bleeding and Filtration of Cement-Based Grout", Ph.D. Thesis, Div. of Soil and Rock mechanics, Royal Institute of Technology, Stockholm.
  12. Gustin, E. J. G., U. F. A. Karim and H. J. H. Brouwers (2007), "Bleeding Characteristics for Viscous Cement and Cement-Bentonite Grouts", Geotechnique, 57(4): 391-395. https://doi.org/10.1680/geot.2007.57.4.391
  13. Indacoechea-Vega, I., P. Pascual-Munoz, D. CastroFresno and D. Zamora-Barraza (2018), "Durability of Geothermal Grouting Materials Considering Extreme Loads", Construction and Building Materials, 162: 732-739. https://doi.org/10.1016/j.conbuildmat.2017.12.072
  14. Lee, C., S. Park, D. Lee, I. M. Lee and H. Choi (2014), "Viscosity and Salinity Effect on Thermal Performance of Bentonite-Based Grouts for Ground Heat Exchanger," Applied Clay Science, 101: 455-460. https://doi.org/10.1016/j.clay.2014.09.008
  15. Lee, J. W., T. M. Oh, H. Kim and M. K. Kim (2019), "Coupling Material Characteristics with Water-Cement Ratio for Elastic Wave Based Monitoring of UnderGround Structure", Tunnelling and Underground Space Technology, 84: 129-141. https://doi.org/10.1016/j.tust.2018.11.014
  16. Mao, J. H., D. J. Yuan, D. L. Jin and J. F. Zeng (2020), "Optimization and Application of Backfill Grouting Material for Submarine Tunnel", Construction and Building Materials, 265: 120281. https://doi.org/10.1016/j.conbuildmat.2020.120281
  17. Memon, S. A., R. Arsalan, S. Khan and T. Y. Lo (2012), "Utilization of Pakistani Bentonite as Partial Replacement of Cement in Concrete", Construction and building materials, 30: 237-242. https://doi.org/10.1016/j.conbuildmat.2011.11.021
  18. Mesboua, N., K. Benyounes and A. Benmounah (2018), "Study of the Impact of Bentonite on the Physico-Mechanical and Flow Properties of Cement Grout", Cogent Engineering, 5(1): 1446252. https://doi.org/10.1080/23311916.2018.1446252
  19. Mikkelsen, P. E. (2002), "Cement-Bentonite Grout Backfill for Borehole Instruments", Geotechnical News, 20(4): 38-42.
  20. Minoretti, A., X. Xiang, I. L. Johansen and M. Eidem (2020), "The Future of the Tunnel Crossing: The Submerged Floating Tube Bridge", Structural Engineering International, 30(4): 493-497. https://doi.org/10.1080/10168664.2020.1775165
  21. Shirlaw, J. N., W. Kay and P. Venu (2014), "Rock Fissure Grouting in Singapore Granite for Building Protection during Station Construction", Proceedings of the eighth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Seoul, 375-380.
  22. Sonebi, M. and A. Perrot (2019), "Effect of Mix Proportions on Rheology and Permeability of Cement Grouts Containing Viscosity Modifying Admixture", Construction and Building Materials, 212: 687-697. https://doi.org/10.1016/j.conbuildmat.2019.04.022
  23. Tan, O., A. S. Zaimoglu, S. Hinislioglu and S. Altun (2005), "Taguchi Approach for Optimization of the Bleeding on Cement-Based Grouts", Tunnelling and underground space technology, 20(2): 167-173. https://doi.org/10.1016/j.tust.2004.08.004
  24. Warner, J. (2004), Practical Handbook of Grouting: Soil, Rock, and Structures: John Wiley & Sons.
  25. Zhang, Y., S. Wang, B. Zhang, D. Hou, H. Li, L. Li, J. Wang and C. Lin (2020), "A Preliminary Investigation of the Properties of Potassium Magnesium Phosphate Cement-Based Grouts Mixed with Fly Ash, Water Glass and Bentonite", Construction and Building Materials, 237: 117501. https://doi.org/10.1016/j.conbuildmat.2019.117501
  26. Zhou, Y., G. H. Wang and Y. F. Yuan (2020), "Basic Properties and Engineering Application of BentoniteCement-Water Glass Grouting", KSCE Journal of Civil Engineering, 24(9): 2742-2750. https://doi.org/10.1007/s12205-020-1928-7