• Title/Summary/Keyword: water/binder ratio(W/B)

Search Result 138, Processing Time 0.027 seconds

The Study on the Mix Design of the Super Flowing Concrete (초유동 콘크리트의 배합설계에 관한 연구)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.283-289
    • /
    • 1996
  • In this paper, the mix design of the super flowing concrete is described with respcet to basic concept, confined water ratio($\beta_p$), volume ratio of water-binder(w/b), volume ratio of fine aggregates($S_r$) and coarse aggregates($G_v$). The primary purposes of this study are to evaluate the effects of cementitious materials(fly ash, slag cement, portland cement), mixing factors ($\beta_p$, w/b, $S_r$, $G_v$)., and to propose the mix design method of the super flowing concrete. As results of this study, confined water ratio($\beta_p$) of cementitious materials is very high (0.99~1.1), and then the ranges of the optimum mixing factors to be satisfied with the super flowing concrete are $S_r$ 47$\ell$ 2%, $G_v$ 52$\ell$ 1%.

  • PDF

An Experimental Study on the Quality Properties of High Strength Concrete by the Replacement Ratio SFFB as Substitutes of Silica-fume (실리카 흄 대체재로 활용 가능한 SFFB의 치환율에 따른 고강도 콘크리트의 품질특성에 관한 실험적 연구)

  • Lim, Byung-Hoon;Lee, Sang-Soo;Yun, Hyun-Do;Yoon, Gil-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.87-92
    • /
    • 2010
  • This study set up 25, 35% for silica fume, SFFB's 2 level and water-combination material ratio, silica fume 10% for substitution ratio, and 4 level of SFFB 5, 10, 15(%) in order to compare and analyze the quality characteristic of ultra high strength concrete according to the substitution ratio of silica fume free binder (SFFB) that can be utilized as a substitute material for silica fume. As a result of an experimentation, the lower water-combination material ratio was, the higher addition ratio of high performance water-reducing agent for securing target liquidity increased, and it indicated the tendency that addition ratio of high performance water-reducing agent decreases because of material characteristic that SFFB has a lower absorptiveness than silica fume. The best strength was shown when SFFB substitution ratio is 10% at compressive strength and when substitution ratio is 15% at tensile strength, and it was indicated that at autogenous shrinkage contraction decreases compared to Plain(SF) regardless of substitution ratio of W/B and SFFB.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Physical Properties of the Hardened Loess Using Natural Binding Materials (천연 결합재를 사용한 황토경화체의 물성에 대한 연구)

  • Kim, Jin Seok;Oh, Young Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • In this study, hardened loess bodies, which did not compose of cement or any chemical binder, were made and tested to evaluate the physical properties such as slump, air content, and compressive strength. Addition of a natural binding material to mixture of loess and lime showed better performance in physical properties. However a lime among natural binding materials is considered as a superior binder to improve the properties of the hardened bodies. According to the experimental results, mixing proportion with 45% of W/B ratio, $285kg/m^3$ of water content, and 60% lime substitution ratio was recommended to acquire the good performance of physical properties for the hardened loess bodies.

Prediction of Compressive Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with a Mathematical Model

  • Shafieyzadeh, M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.

Experimental analysis on rheological properties for control of concrete extrudability

  • Lee, Hojae;Kim, Jang-Ho Jay;Moon, Jae-Heum;Kim, Won-Woo;Seo, Eun-A
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.93-102
    • /
    • 2020
  • In this study, we examined the relationship among the rheological properties, workability, and extrudability in the construction of concrete structures using additive manufacturing. We altered the component materials (binder type, water-binder (W/B) ratio, sand ratio) to assess their effect on the rheological properties experimentally. The results indicated that the W/B and sand ratios had the largest effect on the rheological properties. In particular, when the sand ratio increased, it indicated that adjusting the sand ratio would facilitate control over the rheological properties. Additionally, we compared the rheological properties with the results of a traditional workability evaluation, namely the table flow test. This indicated the possibility of inferring the rheological properties by using traditional methods. Finally, we evaluated extrusion quantity according to table flow. The extrusion rate was 350 g/s for a flow of 210 mm and 170 g/s for a flow of 130 mm, indicating that extrusion rate increased as flow increased; however, we concluded that a flow standard of approximately 140-160 mm is suitable for controlling the actual extrusion quantity and rate.

Autogenous Shrinkage of Concrete Containing Blast-Furnace Slag (고로 슬래그를 함유한 콘크리트의 자기 수축)

  • 이회근;권기헌;이광명;김규용;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.417-420
    • /
    • 2003
  • Concrete with low water to binder ratio (W/B) is prone to large autogenous shrinkage. Early age cracking of concrete would be caused by tensile stress induced by large autogenous shrinkage under restrained condition. Therefore, it is necessary to measure autogenous shrinkage to control the early age cracking of concrete. An objective of this study is to investigate the effects of W/B and blast furnace slag (BFS) on autogenous shrinkage of concrete. Autogenous shrinkage of concrete with various W/B ranging from 0.42 to 0.27 and BFS contents of 0, 30 and 50% were measured. Test results show that the autogenous shrinkage of concrete increases as the W/B decreases, and all BFS concretes showed larger autogenous shrinkage than OPC concretes with the same W/B. Moreover, the higher BFS content, the larger autogenous shrinkage.

  • PDF

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

Autogenous Shrinkage Properties of Ultra High Strength Concrete According to the Mixing Design (배합에 따른 초고강도 콘크리트의 자기수축 특성)

  • Ha, Jung-Soo;Paik, Min-Su;Lee, Joo-Ha;Sohn, Yu-Shin;Lee, Seung-Hoon;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.79-80
    • /
    • 2011
  • In this study, W/B that affect the strength and shrinkage were 4 level(14.5~11.5%), so that the and the physical and shrinkage properties were verified. And the shrinkage formula is suggested at the age of 91. The results showed that the strength of W/B 12.5% was the highest strength. And as W/B decreased, the shrinkage ratio increased. The autogenous shrinkage was rapidly decreased after 28 days.

  • PDF

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.