• Title/Summary/Keyword: water+formic acid

Search Result 134, Processing Time 0.024 seconds

Flash Point Determination of Binary Liquid Solution Containing Nonflammable Component (비가연성 성분을 포함한 이성분계 액상 용액의 인화점 결정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.40-45
    • /
    • 2019
  • Flash point is the important flammability indicator characterizing the risk of fire and explosion of flammable liquid mixture. In this study, flash points of water+formic acid and water+acrylic acid were measured by Seta flash apparatus. The flash points estimated by the methods based on empirical equation and Raoult's law were compared with experimental flash points. Absolute average errors of the results estimated by Raoult's law are $10.7^{\circ}C$ and $4.8^{\circ}C$ for water+formic acid and water+acrylic acid, respectively. Absolute average errors of the results estimated by empirical equation are $1.0^{\circ}C$ and $0.5^{\circ}C$ for water+formic acid and water+acrylic acid, respectively. In conclusion, the estimated values by empirical equation simulated the measured values better than those calculated by Raoult's law.

A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid (Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구)

  • Jeong, Sangjo;Choi, Hyungjin;Park, Sangjin;Lee, Juneil
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.

Effect of Formic Acid Addition on the Quality of Barley Silage in Accordance with Growth Stage (Formic Acid 첨가가 보리의 생육단계별 Silage 품질에 미치는 영향)

  • 박남배;곽종형;고영두
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.3
    • /
    • pp.214-219
    • /
    • 1984
  • This experiment was conducted to investigate the effects of formic acid addition(0.2%, 0.4% and 0.6% levels) and wilt on the quality of barley silage in accordance with growth stage, and pH and organic acid content were also analyzed. The results obtained were summarized as follows: 1. In the chemical composition of raw barley, moisture, crude protein and crude fat were decreased with advancing the maturity, but crude fiber and NFE were reversely increased. The water soluble carbohydrate content was 12.7% in the milky stage and was the highest among growth stages. It was also decreased with advancing the maturity. 2. The crude protein content of barley silage was increased by addition of formic acid and wilt treatment. ADF and NDF content were increased with advancing the maturity. ADF content was decreased in proportion to addition of formic acid. 3. pH tended to a little increase with advancing the maturity and was a little low by increasing the level of formic acid. The lactic acid content was the highest in the milky stage and in the 0.6% formic acid addition. Based on the above results, it would be suggested that the superior quality of barley can be produced from the heading stage to the milky stage from 0.4% to 0.6% in the level of formic acid for the making of barley silage.

  • PDF

Synthesis of 4,5-Diphenyl Imidazolone and Studies on its Fluorescent Effect (4,5-Diphenyl-Imidazolone의 合成 及 螢光效果에 關한 硏究)

  • Jeon, Poong-Jin;Kim, Hyung-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.70-77
    • /
    • 1957
  • 4,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 904,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 704,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}C$. . Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85%. Reaction temperature 150∼110$^{\circ}C$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}C$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes. . and dye-time 15 minutes. . and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes.

  • PDF

Application of Photocatalytic Reaction Using TiO2 Thin Film (TiO2 박막을 이용한 광촉매반응의 응용)

  • Kim, Yeong-Kwan;Kim, Sung-Ho;Kim, Dong-Hyun
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.249-254
    • /
    • 1997
  • Photocatalytic reaction using $TiO_2$ thin film was applied for the inactivation of coliform bacteria and the degradation of formic acid. UV processes coupled with and without $TiO_2$ were tested for the river water samples. It took 5 and 15 minutes, respectively, to obtain 99% destruction of coliform bacteria in the total coliform test, which demonstrated the effectiveness of the photocatalytic reaction. Complete degradation of formic acid determined by TOC analysis was observed in 20 minutes by ozone/photocatalysis, while formic acid was degraded as little as about 20% during the first 100 minutes by ozone treatment alone. When ozone was supplied to the $TiO_2/UV$ system, however, it provided a synergetic effect for the degradation of formic acid.

  • PDF

Electric Conductance of Dilute Solutions of Alkali Chlorides in Acetone-Water and Formic Acid-Water Mixtures (아세톤-물 및 포름酸-물 混合溶媒中에서의 알칼리 鹽化物溶液의 電導度)

  • Byung-Rin Cho;Yong-Ja Lee;Kwang-Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.12-18
    • /
    • 1978
  • The electric conductances of dilute solutions of alkali chlorides (LiCi, NaCl, KCl, RbCl, CsCl) in a series of acetone-water and formic acid-water mixtures were determined respectively at $^30{\circ}C$. The results of the conductances of alkali chlorides in acetone-water mixtures were analysed by the Debye-Huckel-Onsager equation and the variations of limiting equivalent conductances with the compositions of acetone-water mixtures were explained in terms of selective solvation of electrolytes. The conductances of dilute solutions of alkali chlorides in formic acid-water could not be analysed because of the strong ionic atmosphere of solvent itself.

  • PDF

Effects of Formic Acid Administration in the Drinking Water on Performance, Intestinal Microflora and Carcass Contamination in Male Broilers under High Ambient Temperature

  • Aclkgoz, Z.;Bayraktar, H.;Altan, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • In this study, we examined the effects of formic acid administration to the drinking water on performance, intestinal microflora and carcass contamination in male broilers. A total of 312 day-old male broiler chicks were allocated to two groups with three replicates. The first group (control) received normal drinking water (pH 7.4) during the experiment. The second group consumed acidified drinking water (pH 4.5) after 5 d of age. At 43 d of age, twelve birds were randomly selected from the control group to determine the effect of acidified drinking water on carcass contamination. These birds were only given normal or acidified (pH 3) drinking water for 8 h prior to slaughter. The reduction of water pH from 7.4 to 4.5 significantly decreased body weights of male broilers at 21 and 42 d of age. However, no differences were observed between male broilers given normal and acidified drinking water in terms of feed intake, feed conversion ratio and mortality. The pH value of the gizzard contents was not significantly affected by acid water treatment. There were no significant differences in the intestinal population of E. coli, total organism and Salmonella between the groups. The total organism and E. coli counts of the carcass slightly decreased in the acidified group. No Salmonella was identified in carcass samples of any of the treatment groups. The results showed that drinking water acidification did not provide beneficial effects on performance, intestinal microflora and carcass contamination in male broilers.

Effects of Several Chemicals Treatment for Cocoon Sericin (견층(繭層) Sericin에 대(對)한 몇 가지 화학약제(化學藥劑) 처리(處理)의 효과(效果))

  • Rhee, In Jeon;Lee, Dong Soo;Cheon, Seung Rok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.70-78
    • /
    • 1985
  • The purpose of this study was to find out effects of several chemicals treatment for cocoon sericin. and there was several results of use to control the solubility of cocoon sericin in water. The results obtained was summarized as follows ; The chemicals which showed the strongest accelerating power on the solubility of cocoon sericin in water was sodium peroxide ($Na_2O_2$), the second was sodium carbonate ($Na_2CO_3$), the third was sodium sulfite ($Na_2SO_3$), the weakest was ammonia water ($NH_4OH$) in order among noticed silk-reeling accelerators. The chemicals which showed the inhibiting power on the solubility of cocoon sericin in water was tannic acid ($C_{14}H_{10}O_9$), the second was stannic acid ($Sn(OH)_4$), the third was formic acid (HCOOH) and the weakest was methyl alcohol ($CH_3OH$) in order among noticed silk-reeling inhibitors. Particulary stannic acid and formic acid showed accelerating power on the solubility of cocoon sericin at high temperature over 100 degrees of celsius thermometer in water Methyl alcohol did not show the inhibiting power on the solubility of cocoon sericin in low concentration. (at 1,500-2,000 times)

  • PDF

Effects of Formic Acid on the Quality of Rye Silage at Different Dry Matter Levels (개미산의 첨가가 건물함량이 다른 호밀 사일리지의 품질에 미치는 영향)

  • 신정남;배동호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 1986
  • Experiments were conducted to study the effects of formic acid on the quality of the rye silages at the different dry matter content (19.2, 28.6 and 32.2%) and different formic acid addition levels (0.00, 0.24, 0.48 and 0.71%). Rye were taken at vegetative stage (plant height 40cm) on November 29, 1984. Herbage were adjusted dry matter contents by wilting. Materials were ensiled in small polyethelene film bag after addition planned formic acid, and stored under room temperature. The results obtained are as follows: 1. In the visual observation of silage quality by addition of formic acid in unwilted silage show more clear brownish-yellow color and sweet flavor and less acidity compared with untreated formic acid. 2. The pH values of the silage increased by increasing DM content. At lower dry matter contents in materials the pH values decreased with increased formic acid levels. At higher dry matter content silage, however, non significant difference were observed. 3. The formation of total organic acid decreased by increasing DM content in the materials, and there appeared a significant difference (P<01) among formic acid levels. The organic acid contents in silage decreased with higher formic acid levels. 4. The water soluble carbohydrate in silage increased by increasing DM content. And it was also increased (P<01) with increased formic acid addition level. 5. The production of NH_3 - N decreased (P<01) with increasing the addition of formic acid, and decreased by increasing DM content in materials. 6. The in vitro dry matter digestibility of silages showed not difference among dry matter contents of the materials but at 0.71% addition of formic acid in unwilted silages appeared higher (P<05) digestibility compared the others (0.00% and 0.24%).

  • PDF

Conversion of Fructose to 5-HMF(5-hydroxymethylfurfural) in DMSO(dimethylsulfoxide) solvent (DMSO(dimethylsulfoxide) 용매에서 과당의 5-HMF(5-hydroxymethylfurfural) 전환)

  • Sung, Yong Joo;Park, Chong-Jin;Kim, Byung-Ro;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.21-26
    • /
    • 2013
  • Conversion of fructose to 5-hydroxymethylfurfural (5-HMF) was investigated in dimethylsulfoxide (DMSO) solvent with increasing reaction temperatures and impact of residual water from dehydration reaction byproduct. To convert fructose to 5-HMF, increasing reaction temperature led more conversion to 5-HMF than lower temperature at the range of $120-150^{\circ}C$ in DMSO solvent. DMSO engaged in the acid-catalyzed dehydration and rearrangement reaction as acid and solvent. Increasing temperature led to more furanose structure than pyranose at the range of $30-80^{\circ}C$. Formed 5-HMF could be degraded to levulinic and formic acid at the presence of acid and water. Removal of water in reaction medium could prevent 5-HMF degradation.