DOI QR코드

DOI QR Code

Flash Point Determination of Binary Liquid Solution Containing Nonflammable Component

비가연성 성분을 포함한 이성분계 액상 용액의 인화점 결정

  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University) ;
  • Lee, Sungjin (Dept. of Clinical Laboratory Science, Semyung University)
  • 하동명 (세명대학교 보건안전공학) ;
  • 이성진 (세명대학교 임상병리학과)
  • Received : 2019.02.14
  • Accepted : 2019.06.25
  • Published : 2019.06.29

Abstract

Flash point is the important flammability indicator characterizing the risk of fire and explosion of flammable liquid mixture. In this study, flash points of water+formic acid and water+acrylic acid were measured by Seta flash apparatus. The flash points estimated by the methods based on empirical equation and Raoult's law were compared with experimental flash points. Absolute average errors of the results estimated by Raoult's law are $10.7^{\circ}C$ and $4.8^{\circ}C$ for water+formic acid and water+acrylic acid, respectively. Absolute average errors of the results estimated by empirical equation are $1.0^{\circ}C$ and $0.5^{\circ}C$ for water+formic acid and water+acrylic acid, respectively. In conclusion, the estimated values by empirical equation simulated the measured values better than those calculated by Raoult's law.

인화점은 가연성 액체 혼합물의 화재와 폭발의 위험성을 특징짓는 중요한 인화성 지표이다. 본 연구에서는 Seta flash 장치에 의해 water+formic acid 계와 water+acrylic acid 계의 인화점을 측정하였다. 측정한 인화점을 라울의 법칙과 경험식을 이용한 인화점 예측값과 비교하였다. 라울의 법칙을 이용한 예측 결과의 절대평균오차는 water+formic acid 계의 경우 $10.7^{\circ}C$ 였고, water+acrylic acid 계의 경우 $4.8^{\circ}C$ 이었다. 경험식을 이용한 예측 결과의 절대평균오차는 water+formic acid 계의 경우 $1.0^{\circ}C$ 였고, water+acrylic acid 계의 경우 $0.5^{\circ}C$ 이었다. 결과적으로 라울의 법칙에 의한 예측값에 비해 경험식에 의한 예측값이 측정값을 보다 잘 모사하였다.

Keywords

References

  1. Khalili, T., and Moghaddam, A. Z., "Measurement and Caluation of Flash Point of Binary Aqueous-Organic and Organic-Organic Solutions", Fluid Phsae Equilibria, 312, 101-105, (2006) https://doi.org/10.1016/j.fluid.2011.09.003
  2. Rowley, J.R., Freeman, D.K., Rowley, R.L., Oscarson, J.L., Giles, N.F., and Wilding, W.V., "Flash Point : Evaluation, Experimentation and Estimation", Int J Themophys, 31, 875-887, (2010) https://doi.org/10.1007/s10765-010-0716-x
  3. Lance, R.C., Barnard, A.J., and Hooymanm, J.E., "Measurement of Flash Points : Apparatus, Methodology, Applications", J. of Hazardous Materials, 3, 107-119, (1979) https://doi.org/10.1016/0304-3894(79)85008-6
  4. Ha, D.M., and Lee, S.J. Lee, "The Calculation of Flash Point for n-Nonane+n-Decane+ n-Tridecane System by Raoult's Law and Multiple Regression Analysis", KIGAS, 22(2), 52-58, (2018)
  5. Ha, D.M., and Lee, S.J. Lee, "Dew Point Prediction by Lower Flash Points of Binary Mixtures", J. of the Korean Society of Safety, 32(6), 34-39, (2017) https://doi.org/10.14346/JKOSOS.2017.32.6.34
  6. Affens, W.A., and Mclaren, G.W., "Flammability Properties of Hydrocarbon Solutions in Air", J. of Chem. Ind. Eng. Chem. & Eng. Data, 17(4), 482-488, (1972) https://doi.org/10.1021/je60055a040
  7. Le Chatelier, "Esimation of Firedamp byFlammability limits", Ann. Minmes, 19, 388-392, (1891)
  8. Poling, B.E., Prausnitz, J.M., and O'Connell, J. P., "The Properties of Gases and Liquids", 5th Ed., McGraw-Hill, New York, (2001)
  9. Liaw, H.J., Lee, Y.H., Tang, C.L., Hsu, H.H., and Liu, J.H., "A Mathematical Model for Predicting the Flash Point of Binary Solutions", J. of Loss Prevention in the Process Industries, 15, 429-438, (2002) https://doi.org/10.1016/S0950-4230(02)00068-2
  10. Ha, D.M., Choi, Y.C., and Lee, S.J., "Flash Points of Water-n-Propanol System Using Closed-Cup Measurement Apparatus", Journal of the KIIS., 17(4), 140-145, (2002)
  11. Ha, D.M., and Lee, S.J., "The Measurement and Prediction of Maximum Flash Point Behavior for Binary Solution", Fire Sci. Eng., 27(5), 1-5, (2013) https://doi.org/10.7731/KIFSE.2013.27.5.1
  12. In 2011 Annual Book of ASTM Standards ; ASTM International, 2011, Standard Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus(ASTM D3278), West Conshohocken, PA, (2011)
  13. Liaw, H.J., and Chiu, Y.Y., "The prediction of the flash point for binary aqueous-organic solutions", Journal of Hazardous Materials, 101, 83-106, (2003) https://doi.org/10.1016/S0304-3894(03)00168-7
  14. Gmehing, J., Onken, U., and Arlt, W., Vapor-Liquid Equilibrium Data Collection, 1, Part1- Part7, DECHEMA, (1980)
  15. Caoire, L., Paulmier, S., and Naudet, V., "Estimation of Closed Cup Flash Points of Combustible Solvent Blends", J. Phy. Chem. Ref. Data, 35(1), 9-14, (2006) https://doi.org/10.1063/1.1928236
  16. Kim, S.Y., Lee, B.S., Chung, C.B., and Choi, S.H., "Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis", KIGAS, 10(4), 29-33, (2006)
  17. Vidal, M., Rogers, W.J., and Mannan, M.S., "Prediction of Minimum Flash Behaviour for Binary Mixtures", Process Safety and Environmental Protection, 84, 1-9, (2006) https://doi.org/10.1205/psep.05041
  18. Ha, D.M, Jung, H.P., Lee, S.J., and Nam, D.G., "Introduction of International Classification Standards for Flammable Liquids and Development of Standard Techniques for Risk Assessment", National Emergency Management Agency, (2014)
  19. Lee, C.J., Ko, J.W., and Lee, G., "Flash point prediction of organic compounds using a group contribution and support vector machine", Korea J. Chem. Eng., 29, 145-153, (2012) https://doi.org/10.1007/s11814-011-0164-8