• Title/Summary/Keyword: wastewaters

Search Result 176, Processing Time 0.026 seconds

Assessing Metallic Toxicity of Wastewater for Irrigation in Some Industrial Areas of Bangladesh

  • Rahman, Md. Mokhlesur;Jiku, Md. Abu Sayem;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2011
  • BACKGROUND: Wastewaters were collected from 25 sites of two industrial areas of Mymensingh and Gazipur in Bangladesh to assess metallic toxicity of wastewater for irrigation usage. METHODS AND RESULTS: The analyzed wastewaters were slightly alkaline to alkaline in nature and were problematic for irrigation except 3 samples. As per TDS values, 9 samples were rated as fresh water and the rest 16 were classified as brackish water. EC and SAR reflected that all samples were medium salinity (C2), high salinity (C3), very high salinity (C4) and low alkalinity (S1) hazard classes expressed as C2S1, C3S1 and C4S1. Wastewaters of different industries were graded as excellent, good, permissible and doubtful for irrigation purpose as per SSP. According to hardness ($H_T$), wastewater were under moderately hard, hard and very hard classes. Cd, Cr and Cu ions were treated as toxicant for irrigating soils and crops. Zn was problematic for long-term irrigation. The concentrations of Pb, Fe and Na were far below the toxic levels. Synergistic relationships were observed between pH-EC, pH-TDS, EC-TDS, SAR-SSP and SSP-hardness. CONCLUSION(s): If wastewater is applied for irrigation due to the fresh water shortage, it can contaminate soil due to some toxic metal ions.

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Effect of Operating Variables for Phosphate Removal with Cuttlefish Processing Sludge (오징어가공 슬러지를 이용한 인산염인 제거 공정에 미치는 영향인자)

  • 최봉종;이승목;김근한
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.87-91
    • /
    • 1998
  • The removal effect of phosphate by sludge from wastewaters prior to discharge into natural waters is an essential measure to prevent eutrophication in receiving waters. There is need for developing low cost, easily and abundantly available, efficient adsorbents for the removal of phosphorus (P as orthophosphate) during the tertiary treatment of wastewaters. The adsorbent carbon which is prepared with fisheries wastes on a laboratory scale has been used to evaluate its performance for phosphate adsorption. Phosphate removal increase with increasing adsorbent dose and temperature, but shows no changes at an adsorbent dose over 8 g/l.

  • PDF

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

Treatment of Corn Starch Wastewater Using an UASB Reactor (UASB 반응조를 이용한 옥수수 전분폐수의 처리)

  • Shin, Hang-Sik;Bae, Byung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 1993
  • The performance of Upflow Anaerobic Sludge Blanket(UASB) reactor for treatment of corn starch wastewater was investigated using continuous and batch experiment. Results showed that the corn starch wastewater had different characteristics in terms of biodegradability and methane potential, depending on the manufacturing precess. COD removal efficiencies were maintained over 70% up to the loading rate of 3.2 kg $COD/m^3{\cdot}day$ and the maximum gas production rate was about 55 l/day, equivalent to 3.5 l/day per liter of reactor volume, at the loading rate of 8.4 kg $COD/m^3{\cdot}day$. In the anaerobic serum bottle test(SBT) carried out along with continuous operation, the sludge activity was found to increase from 0.03 to 0.53 g $COD-CH_4/g\;VSS{\cdot}day$ as granular sludges were developed in 130 days operation. SBT gave valuable informations on the characteristics of wastewaters to be treated as well as on the sludge activity. The overall morphological characteristics of granular sludges cultivated on corn starch wastewaters were similar to those cultivated on various organic industrial wastewaters such as distillery and sugar.

  • PDF

Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1 (각종 유기성 폐수로부터 Clostridium butyricum 및 Rhodopseudomonas sphaeroides에 의한 수소생산)

  • Yoon, Young-Sue;Kim, Hyun-Kyung;Ryu, Hye-Yeon;Lee, In-Gu;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.29-41
    • /
    • 2000
  • Anaerobic fermentation using Clostridium butyricum NCIB 9576, and photo-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange & apple, watermelon & melon) and Tofu wastewaters. From the Makkoli wastewater, which contained $0.94g/{\ell}$ sugars and $2.74g/{\ell}$ soluble starch, approximately $49mM\;H_2/{\ell}$ wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From Watemlelon and melon wastewater, which contained $43g/{\ell}$ sugars, generated about approximately $71mM\;H_2/{\ell}$ wastewater was produced during the initial 24 h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing $12.6g/{\ell}$ soluble starch and $0.74g/{\ell}$ sugars, generated about $30mM\;H_2/{\ell}$ wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and $22.2{\mu}M\;H_2/m{\ell}$ wastewaters, respectively for 9 days of incubation under the average of 9,000-10,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l, produced approximately $13.1{\mu}M\;H_2/m{\ell}$ wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas sphaeroides E15-1 and hydrogen production were stopped.

  • PDF

A Conceptual Zero-Discharge System for Water Quality Management of the Nak-Dong River (낙동강 수질관리 방안-하수분리 무방류시스템의 개념적 고찰)

  • Park, Hee-Kyung;Hyun, In-Hwan;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.40-49
    • /
    • 1997
  • From water management point of view, the industrialization that we have achieved in the last decades brought out two major changes: water shortage and water quality deterioration. They are getting the big obstacles we must overcome to continuously pursue industrialization for further development in the next century. Many plans using dams and advanced treatment methods have been developed for control of quantity and quality, respectively. In this paper, an alternative is conceptually reviewed which is much different from the plans in regard that the alternative looks at system itself. It is based on an interceptor system coupling with a concept of zero-discharge. This system allows no discharge of wastewaters from point-sources to waterbodies which are very sensitive in terms of water quality. In addition reuse of treated effluents is emphasized to a maximum extent. The application of the system to the Nak-Dong river basin indicated that an interceptor system will need from the middle reaches of the basin where industrialization gets heavier. Since wastewaters are not directly discharged to the river, water quality of the down stream will improve. Treated effluents will be able to be reused at a number of industrial complex which currently get water from the Nak-Dong river. This reuse will help alleviate water shortage. The biggest problem anticipated is cost for building and operating such system. A cost-sharing plan among the beneficiaries is considered. Further research is suggested focusing on detailed engineering and technical matters for potential implementation.

  • PDF

Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes

  • lehi, Arash Yunessnia;Mousavirad, Seyed Jalaleddin;Akbari, Ahmad
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • Dyeing wastewaters are the most problematic wastewater in textile industries and also, growing amounts of waste fibers in carpet industries have concerned environmental specialists. Among different treatment methods, membrane filtration processes as energy-efficient and compatible way, were utilized for several individual problems. In this research, novel hybrid membranes were prepared by waste fibers of mechanical carpets as useful resource of membrane matrix and industrial graphite powder as filler to eliminate Chrysophenine GX from dyeing wastewater. These membranes were expected to be utilized for first stage of hybrid membrane filtration process including (adsorption-ultrafiltration) and nanofiltration in Kashan Textile Company. For scaling of membrane filtration process, fouling mechanism of these membranes were recognized and explained by the use of genetic algorithm, as well. The graphite increased rejection and diminished permeate flux at low concentration but in high concentration, the performance was significantly worsened. Among all hybrid membranes, 18% wt. waste fibers-1% wt. graphite membrane had the best performance and minimum fouling. The maximum pore size of this optimum membrane was ranged from 16.10 to 18.72 nm.