• Title/Summary/Keyword: wastewater treatment and management

검색결과 292건 처리시간 0.03초

충청남도 마을하수처리시설의 최적 설치방안 (Alternatives for Optimum Installation of Rural Sewage Treatment Facilities in Chungchongnam-do Province)

  • 이상진;정종관;임봉수;허재영
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.462-472
    • /
    • 2005
  • This study was carried out to suggest the plans for installation of rural sewage treatment facilities through the analysis of these facilities installed in Chungchongnam-do Province. About 5% of all installation was carried out by the department of wastewater and related environment problems and the other case was carried out by the department of construction or residence. In wastewater caused by 250 and 300 persons, facilities capacity do not exceed about $50m^3/d$, caused by 2,500 and 3,000 persons, $500m^3/d$. Advanced sewage treatment process were first needed in the discharge area where affected the water environment greatly. However, in carrying out the water quality pollutant of the total amount management system in the other areas, they should be driven only over the scale of pollutant quota object facilities standard. Rural sewage must be included in the special accounts according to the regulations of local government, and sewage treatment cost should be collected to manage. Installation type uses integrating joint treatment method in case the distance among villages is short or one treatment facility independently.

가죽, 모피 가공 및 제조업 폐수처리시설의 경제성 평가 (Economical Assessment of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry)

  • 김재훈;양형재;권오상;이성종
    • 한국물환경학회지
    • /
    • 제23권1호
    • /
    • pp.131-137
    • /
    • 2007
  • Industrial wastewater management guideline and evaluation model of Best Available Technologies for the leather tanning and finishing industry was developed as an economical evaluation model using evaluation of BAT including economical evaluation combined with cost analysis model and cost annualization model in considering of economical factors and non-water environmental factors. It was verified that approximately 10% will be increased annually to modify conventional treatment process ($3,700m^3/d$) of J leather wastewater treatment plant to advanced process of K leather wastewater treatment plant.

공공하수처리시설에서 수질오염물질 유입 및 배출 특성 고찰 - 산업폐수 및 매립지 침출수 연계처리 시설을 중심으로 - (A study on characteristics of influent and effluent pollutants in public sewage treatment works combined with industrial wastewater and landfill leachate)

  • 정동환;조양석;안경희;김은석;김창수;정현미
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.673-682
    • /
    • 2016
  • In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on "Water Quality Monitoring Networks" in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.

Status, Trend and Strategy on Municipal Wastewater Management in China

  • Wang, Baozhen;Wang, Lin;Liu, Shuo;Wang, Li;Wang, Zheng
    • 한국습지학회지
    • /
    • 제9권1호
    • /
    • pp.47-60
    • /
    • 2007
  • The rapid development of economy in China at the expense of consuming huge amount of energy and resources, water resource in particular, which has resulted in the production and discharge of increasing amount of wastewater to the water environment. In order to effectively control the increasing water pollution trend, the State Council has stipulated that all the cities with population over 500,000 should reach wastewater treatment rate of 60% by 2005, and all the cities should reach the rate of 60% by 2010, of which Capital Beijing and all the province capital cities and important tourism cities should reach 70% then. By the end of 2005, of the 661 cities in China, 393 have built and operated municipal wastewater treatments with a total number of 790 sets, total treatment capacity of $80.91{\times}106m^3/d$ and total treatment rate of > 48%. Other 73 cities have started the construction of municipal wastewater treatment plants, and other 168 cities have started to prepare, planning and design of wastewater treatment plants. Most of municipal wastewater treatment plants in big cities in China operate normally and perform well with good quality of effluent in terms of wastewater treatment train, but the sewage sludge treatment is usually poor with big problems. It has been found that the small scale WWTPs using activated sludge process in the towns are usually operated and maintained abnormally because of lack of fund, skilled operators and energy. It is therefore suggested that the small scale MWWTPs in small cities and towns adopt appropriate technologies, of which the most available ones are multi-stage ponds, constructed wetlands and the combination of them for further purification and reuse of treated wastewater.

  • PDF

윤충류를 활용한 하천 및 연안의 수질관리에 관한 연구 (A Study on the Water Quality Management Using the Rotifers)

  • 김정숙
    • 한국환경과학회지
    • /
    • 제16권2호
    • /
    • pp.227-232
    • /
    • 2007
  • Water pollution in enclosed water bodies such as lake and river has become a serious problem over the world. Domestic wastewater is responsible for more than 60 % pollution load in public water area in Korea. Effluent of the treated domestic wastewater at low removal level is abundantly fed rivers and lakes and thus be an serious cause of lake pollution. Therefore, effective implement of domestic wastewater treatment in basin of lake and river must be prepared. The septic tank is one of the effective domestic wastewater treatment equipment and used in individual treatment for a unit of household, The purpose of septic tank as biological treatment system is simultaneously to remove BOD, T-N, T-P and reduce turbidity from influent. Accordingly, the appropriate control of functional microorganisms is important subject for the establishment of stability and economy of the biological treatment method. Especially, microanimals as a high-ranked microorganisms of food-chain are important, because microanimals control the other microorganisms especially various bacteria and effect on function of treatment. Therefore, it is necessary that functional predator like rotifers are attached in wastewater treatment process. In this study, the methods for attachment high density the rotifer to and improvement of transparency in the effluence by a dense rotifer was examined using laboratory scale biological treatment reactor simulated septic tank and real one.

하수처리장 연계처리를 위한 가축분뇨 최적 처리공정 선정에 관한 연구 (Determination of Optimal Livestock Wastewater Treatment Process for Linked Treatment in Sewage Treatment Plant)

  • 김충곤;신현곤
    • 유기물자원화
    • /
    • 제20권3호
    • /
    • pp.52-59
    • /
    • 2012
  • 처리공정별 연계처리수질을 검토한 결과 생물학적처리만 거친 생물반응조 처리수의 경우 연계부하율이 $COD_{Mn}$의 경우 1.67%(설계수질 기준), 2.59%(운영수질 기준), T-P의 경우 3.69%(설계수질 기준), 7.67%(운영수질 기준)로 다소 높게 나타났으나 하수처리장 운영에 미치는 영향은 거의 없을 것으로 판단된다. 또한, 고도처리공정인 산화부상분리 처리수 및 생물여과 처리수의 경우 연계부하율은 1% 내외로 고도처리설비 설치 시 과대 설비설치의 우려가 있다. 따라서 S하수처리장의 경제성 및 안정적인 운영을 고려할 경우 생물학적처리인 생물반응조를 거친 처리수를 연계하는 것이 바람직할 것으로 판단된다.

전기 응집법을 이용한 염색 폐수의 처리에서 전류 밀도와 전해질의 COD 제거율에 대한 영향 (Effects of Current Density and Electrolyte on COD Removal Efficiency in Dyeing Wastewater Treatment by using Electro-coagulation)

  • 장성호;김고은;강정희;류재용;이원기;이재용;박진식
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.653-659
    • /
    • 2018
  • In the industrial wastewater that occupies a large proportion of river pollution, the wastewater generated in textile, leather, and plating industries is hardly decomposable. Though dyeing wastewater has generally been treated using chemical and biological methods, its characteristics cause treatment efficiencies such as chemical oxygen demand (COD) and suspended solids (SS) to be reduced only in the activated sludge method. Currently, advanced oxidation technology for the treatment of dyeing wastewater is being developed worldwide. Electro-coagulation is highly adapted to industrial wastewater treatment because it has a high removal efficiency and a short processing time regardless of the biodegradable nature of the contaminant. In this study, the effects of the current density and the electrolyte condition on the COD removal efficiency in dyeing wastewater treatment by using electro-coagulation were tested with an aluminum anode and a stainless steel cathode. The results are as follows: (1) When the current density was adjusted to $20A/m^2$, $40A/m^2$, and $60A/m^2$ under the condition without electrolyte, the COD removal efficiency at 60 min was 62.3%, 72.3%, and 81.0%, respectively. (2) The removal efficiency with NaCl addition was 7.9% higher on average than that with non-addition at all current densities. (3) The removal efficiency with $Na_2SO_4$ addition was 4.7% higher on average than that with non-addition at all current densities.

하수처리시설의 자연 재해 영향 정량화 지수 개발 연구 (Development of a disaster index for quantifying damages to wastewater treatment systems by natural disasters)

  • 박정수;박재형;최준석;허태영
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.53-61
    • /
    • 2021
  • The quantified analysis of damages to wastewater treatment plants by natural disasters is essential to maintain the stability of wastewater treatment systems. However, studies on the quantified analysis of natural disaster effects on wastewater treatment systems are very rare. In this study, a total disaster index (DI) was developed to quantify the various damages to wastewater treatment systems from natural disasters using two statistical methods (i.e., AHP: analytic hierarchy process and PCA: principal component analysis). Typhoons, heavy rain, and earthquakes are considered as three major natural disasters for the development of the DI. A total of 15 input variables from public open-source data (e.g., statistical yearbook of wastewater treatment system, meteorological data and financial status in local governments) were used for the development of a DI for 199 wastewater treatment plants in Korea. The total DI was calculated from the weighted sum of the disaster indices of the three natural disasters (i.e., TI for typhoon, RI for heavy rain, and EI for earthquake). The three disaster indices of each natural disaster were determined from four components, such as possibility of occurrence and expected damages. The relative weights of the four components to calculate the disaster indices (TI, RI and EI) for each of the three natural disasters were also determined from AHP. PCA was used to determine the relative weights of the input variables to calculate the four components. The relative weights of TI, RI and EI to calculate total DI were determined as 0.547, 0.306, and 0.147 respectively.

하수처리비용을 감안하고 7Q10과 저수량에 기초한 영산강 수질관리방안 연구 (Water Quality Management of the Youngsan River based on the 7Q10 and Q275 considering Wastewater Treatment Cost)

  • 조재현;유태종
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.700-709
    • /
    • 2002
  • Present condition of the Youngsan River pollution is serious. Concentrations of organic materials and nutrients are high and algal bloom takes place frequently. The pollution is mainly caused by domestic wastewater input from urban areas like Kwangju and Naju City. In this study, 6 times of water quality surveys were done for mainstream and tributaries. Delivery ratios of each tributaries are calculated with the water quality and flow data. With Arc/View GIS, sub-basin are divided and pollution loads are estimated. These data are used for water quality modeling. River quality improvement effects are analysed with 5 scenarios including process upgrade of present WWTPs and construction of new WWTPs. These scenarios are applied for the Youngsan River based on the 7Q10 and Q275. And total wastewater treatment cost in the basin is analysed for each scenario.

교량 바닥판 보수공사에서 발생하는 콘크리트 폐수처리 방안 (Treatment of Concrete Wastewater in Repair of Bridge Deck)

  • 이봉학;최판길;김정기
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.125-132
    • /
    • 2008
  • As of 2003, construction waste has been produced at the level of 130,614.8 tons/day, in which the amount of waste concrete was 92,639.1 tons/day and accounted for about 66.4% of the amount of construction waste. Waste concrete is mainly produced in construction work and civil engineering work. Especially, road surface crushing method using a large amount of water requires thorough management of concrete wastewater. The aim of this study was to analyze water pollution due to concrete wastewater generated in repair of bridge deck using road surface crushing equipment and to suggest reasonable countermeasures for solve the problem. In this study, it was surveyed current conditions of produced concrete wastewater in bridge deck repair, analyzed physical features of concrete wastewater, expected effects of water pollution on inflow rivers if it is not treated, established treatment plan of water pollution by categories, and calculated capacity of each treatment process and required amount of necessary chemicals. As a result of sampling wastewater generated in field sites and testing it at a lab scale, it was revealed that the original wastewater was produced in removing concrete from bridge deck slabs using surface crushing equipment whose pH was 12.53, CODMn was 12.910mg/L, SS was 547.0mg/L, and other heavy metals were included in extremely small quantities.

  • PDF