• Title/Summary/Keyword: waste sludge

Search Result 775, Processing Time 0.034 seconds

Development of a Methodology for Estimating Radioactivity Concentration of NORM Scale in Scrap Pipes Based on MCNP Simulation

  • Wanook Ji;Yoomi Choi;Zu-Hee Woo;Young-Yong Ji
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Concerning the apprehensions about naturally occurring radioactive materials (NORM) residues, the International Atomic Energy Agency (IAEA) and its member nations have acknowledged the imperative to ensure the radiation safety of NORM industries. Residues with elevated radioactivity concentrations are predominantly produced during NORM processing, in the form of scale and sludge, referred to as technically enhanced NORM (TENORM). Substantial quantities of TENORM residues have been released externally due to the dismantling of NORM processing factories. These residues become concentrated and fixed in scale inside scrap pipes. To assess the radioactivity of scales in pipes of various shapes, a Monte Carlo simulation was employed to determine dose rates corresponding to the action level in TENORM regulations for different pipe diameters and thicknesses. Onsite gamma spectrometry was conducted on a scrap iron pipe from the titanium dioxide manufacturing factory. The measured dose rate on the pipe enabled the estimation of NORM concentration in the pipe scale onsite. The derived action level in dose rate can be applied in the NORM regulation procedure for on-site judgments.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Evaluation of Landfilling Method of Organic Sludge from Mix of Pre-treated Organic Sludge and Municipal Solid Waste (전처리된 유기성오니와 생활폐기물 혼합에 따른 유기성오니 매립방법 평가)

  • Ko, Jae-Young;Phae, Chae-Gun;Do, In-Hwan;Park, Joon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.278-285
    • /
    • 2008
  • This research was performed to evaluate the landfilling method of organic sludge from mix of pre-treated organic sludge (OS) and municipal solid waste(MSW). Organic sludges were dried, composted, and solidified as pre-treatment and the OS and MSW were mixed in ratios of 2 to 8 and 4 to 6. Approximately 1,800$\sim$2,500 L of landfill gas(LFG) was generated in the lysimeter with solidified-OS, which was higher than 1,150$\sim$1,650 L of the dried- and composted- ones. Maximum H$_2$S concentration was found in the following order : Composted-20(80 ppmv) > Composted-40(55 ppmv) > Dried-20(30 ppmv) > Dried-40 $\fallingdotseq$ Solidified-20 $\fallingdotseq$ Solidified-40 (20 ppmv). BOD$_5$ at initial leachate generation period was 38,000 mg/L for Composted-40, 28,000 mg/L for Dried-40, 26,000 mg/L for Dried-20, 21,000 mg/L for Composted-20 and Solidified-40, and Solidified-20 for 17,000 mg/L. In the final period of experiment, BOD$_5$ was low as 300$\sim$500 mg/L in the lysimeter with solidified-OS and MSW and showed 2,000$\sim$3,500 mg/L in dried- and composted- ones. As the results, landfilling by mix of solidified-OS and MSW was evaluated as the most appropriate method for biodegradable organics. Direct landfilling of OS is permitted for landfill site with CDM facility. Therefore, mixed landfilling of solidified-OS and MSW should be considered for much more LFG generation as methane.

Toxicity of Organic Waste-Contaminated Soil on Earthworm (Eisenia fetida) (유기성 폐기물에 의해 오염된 토양이 지렁이에게 미치는 독성)

  • Na, Young-Eun;Bang, Hae-Son;Kim, Myung-Hyun;Lee, Jeong-Taek;Ahn, Young-Joon;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • The toxicities of contaminated soils with 8 consecutive year applications of three levels (12.5, 25.0, and $50.0t\;dry\;matter\;ha^{-1}yr^{-1}$) of four organic sludge [municipal sewage sludge (MSS), industrial sewage sludge (ISS), alcohol fermentation processing sludge (AFPS) and leather processing sludge (LPS)] on earthworm (Eisenia fetida) were examined by using microcosm container in the laboratory. Results were compared with those of pig manure compost (PMC) treated soil. In tests with three treatment levels (12.5, 25.0, and 50.0 t per plot), ISS treated soil showed higher contents of Cu (18.9~26.2 fold), Cr (7.7~34.7 fold), and Ni (14.8~18.8 fold) at 8 years post treatment, than PMC treated soil. LPS treated soil showed higher contents of Cr (35.7~268.0 fold) and Ni (4.5~7.6 fold) than PMC treated soil. There were no great differences in heavy metal contents among MSS, AFPS, and PMC treated soils. In these contaminated soils, earthworm mortalities of MSS and AFPS treated soils at 8 weeks post-exposure were similar to those of PMC treated soil regardless of each treatment level. Toxic effect (26.7~96.7 mortality) on the ISS and LPS treated soils was significantly higher than one of PMC treated soil, with an exception of LPS soil treated with 25.0 t per plot. At 16 weeks post-exposure, earthworm mortalities of AFPS' 12.5 and 25.0 t treated soils were similar to those of PMC treated soil. Toxic effect (53.3~100 mortality) on the 12.5, 25.0, and 50.0 t treated soils of MSS, ISS and LPS, and AFPS' 50.0 t treated soils was significantly higher than those of PMC treated soil. The data suggested that the 12.5, 25.0, and 50.0 t of MSS, ISS and LPS, and AFPS' 50.0 t treated soils were evaluated to have toxicity on earthworm.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Results of the Precision Monitoring (바이오가스 이용 기술지침 마련을 위한 연구(II) - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2018
  • According to the in social aspects such as population growth, urbanization and industrialization, development of livestock industry by meat consumption, amount of organic wastes (containing sewage sludge and food waste, animal manure, etc) has been increased annually in South Korea. Precise monitoring of 11 organic wastes biogas facilities were conducted. The organic decomposition rate of organic wastewater was 68.2 % for food wastes, 66.8 % for animal manure and 46.2 % for sewage sludge and 58.8 % for total organic wastes. As a result of analyzing the biogas characteristics before and after the pretreatment, the total average of the whole facility was measured to be 560 ppm using iron salts and desulfurization, and decreased to 40 ppm when the reduction efficiency was above 90 %. Particularly, when iron salt is injected into the digester, the treatment efficiency is about 93 %, and the average is reduced to 150 ppm. In the case of dehumidification, the absolute humidity and the relative humidity were analyzed. The dew point temperature of the facility where the dehumidification facility was well maintained as $14^{\circ}C$, the absolute humidity was $12.6g/m^3$, and the relative humidity was 35 %. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure) through precision monitoring.

A Study on the Thermal Characteristics of Waste Organic Sludges Generated from the Industrial Complex -Paper and Beverage Manufacturing Industries- (산업단지에서 배출되는 폐 유기성 슬러지의 열적 특성 -제지업 및 음식료업을 중심으로-)

  • Shon, Byung-Hyun;Lee, Joo-Ho;Jung, Moon-Hun;Kim, Min-Choul;Ko, Ju-Hyun;Park, Hung-Suck;Lee, Gang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1359-1367
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludges generated from paper and beverage manufacturing industries in the industrial complex. The average water and combustible content of the organic sludges from paper and beverage manufacturing industries were 66.07% and 14.67%, 54.98% and 26.77%, respectively. From the ultimate analysis of the organic sludges, C, H, O, N, and S compositions were 21.75%, 3.42%, 32.70%, 0.63%, and 0.30%, respectively. For beverage manufacturing industries, C, H, O, N, and S compositions were 39.88%, 4.28%, 23.20%. 2.65%, and 0.35%, respectively. According to the results of investigating the lower heating values by Dulong's equation, 1 sludge(T company) was on the range of over 2,000 kcal/kg. This sludge could be directly applied to industries which try to use the energy by direct incineration. From the TGA test, the minimum combustion temperature of A company's sludge was about $700^{\circ}C$ for direct use for energy and that of 3 sludges(C, I, and T company) were at least over $800^{\circ}C$.

Dewaterability Improvement and Volume Reduction of Bio-Solid using Ultrasonic Treatment (Bio-Solid의 탈수성 개선 및 감량화를 위한 초음파 적용)

  • Park, Cheol;Ha, Jun Soo;Kim, Young Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4019-4023
    • /
    • 2014
  • This study examined the effectiveness of ultrasound on enhancing the dewaterability and volume reduction of bio solids from a waste treatment plant. The test specimen was obtained from a storage tank immediately before the dewatering process at a local treatment plant. The test conditions included the energy levels of ultrasonic waves and treatment time. The tests were undertaken using three types of different treatment processors (7 liter, 1 ton, 7 ton container). The capillary suction time (CST) and the viscosity of sludge, which is one of the influencing factors for dewaterbility, were obtained under various test conditions. The results showed that ultrasound increases the CST of the raw specimens, whereas a significant reduction (20 % of the maximum value) of CST occurred in the sample with ultrasound and flocculent. The decrease in viscosity reached 40 % of the maximum value. A centrifugal test was performed to examine the characteristics of the sludge settlement. The settling rate and time required to reach the final values were both enhanced by the ultrasonic energy. An ultrasonic treatment is potentially useful tool for reducing the amount of released sludge. To examine the possible use of field application, the real scale sonic processor was designed and operated. The results were similar (50 % of the maximum value) to those of laboratory experiments.

Evaluation of Field Applicability with Coal Mine Drainage Sludge (CMDS) as a Liner: Part I: Physico-Chemical Characteristics of CMDS and a Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part I: 광산배수슬러지 및 혼합차수재의 물리·화학적 성질)

  • Lee, Jai-Young;Bae, Sun-Young;Woo, Seung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • CMDS (Coal Mine Drainage Sludge) is mainly generated from acid mine drainage during physicochemical treatment or electrical purification. CMDS is well worth considering on recycling possibilities in various areas. This research applies the liner and cover materials using waste disposal landfill generally to treat acid mine drainage sludge. In this Part I of the two parts paper, physico-chemical characteristics of CMDS, bentonite and cement to prepare the liner have been identified using XRD, XRF, FESEM. In addition, combining their physicochemical characteristics, the optimum mixing ratio has been determined to be 1: 0.5: 0.3 for CMDS: bentonite: cement by the batch tests. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$. Through the leaching test, it was confirmed that its mixture was environmentally safe. In the Part 2, a large-scale Lysimeter was used to simulate the effects of the layer on the freeze/thaw for evaluation on field applicability and stability.

The Applicability of the Acid Mine Drainage Sludge in the Heavy Metal Stabilization in Soils (산성광산배수슬러지의 토양 중금속 안정화 적용 가능성)

  • Kim, Min-Suk;Min, Hyungi;Lee, Byeongjoo;Chang, Sein;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong-Sik;Bak, Gwan-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.78-85
    • /
    • 2014
  • BACKGROUND: Recent studies using various industrial wastes for heavy metal stabilization in soil were conducted in order to find out new alternative amendments. The acid mine drainage sludge(AMDS) contains lots of metal oxides(hydroxides) that may be useful for heavy metal stabilization not only waste water treatment but also soil remediation. The aim of this study was to investigate the applicability of acid mine drainage sludge for heavy metals stabilization in soils METHODS AND RESULTS: Alkali soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine sites nearby. Three different amounts(1%, 3%, 5%) of AMDS were applied into control soil and contaminated soil. For determining the changes in the extractable heavy metals, $CaCl_2$ and Mehlich-3 were applied as chemical assessments for metal stabilization. For biological assessments, lettuce(Lactuca sativa L.) and chinese cabbage(Brassica rapa var. glabra) were cultivated and accumulation of heavy metals on each plant were determined. It was revealed that AMDS reduced heavy metal mobility and bioavailability in soil, which resulted in the decreases in the accumulation of As, Cd, Cu, Pb, and Zn in each plant. CONCLUSION: Though the high level of heavy metal concentrations in AMDS, any considerable increase in the heavy metal availability was not observed with control and contaminated soil. In conclusion, these results indicated that AMDS could be applied to heavy metal contaminated soil as an alternative amendments for reducing heavy metal mobility and bioavailability.

Organic Wastewater Treatment Using Modified Fenton's Oxidation (변형 펜턴산화법을 이용한 유기폐수의 처리)

  • Kim, Ji Yeon;Yoon, Tai Il;Park, Se Jin
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1999
  • Fenton's oxidation can improve the biodegradability of refractory organic wastewater by generating $OH{\cdot}$ which is one of the most reactive species. Fenton's reagent is used to treat a variety of industrial waste containing a range of toxic organic compounds. But this process cannot be economical because of high chemical cost of $H_2O_2$, ferrous ion solution and high sludge disposal cost. In this study, we proposed a modified Fenton's oxidation process which can reduce the reagent cost and obtain better removal efficiencies with less Fenton's reagents, and have a good potential of sludge recycling. In modified Fenton reaction, ferrous ion solution is adjusted to optimal pH with NaOH. Then it added to the sample and reacted to $H_2O_2$. For the experiment, synthetic wastewater made of phenol, which is one of the typical water pollutants, was used and the ionic strength of this wastewater was controlled by adding $NaHCO_3$. The effects of DO, ionic strength, and $H_2O_2$ dosing methods were investigated. As a result, modified Fenton's treatment efficiencies are better than conventional Fenton's reaction treating leachate and dyeing wastewater. And modified Fenton's treatment efficiencies combined to the sludge recycling for a half of Iron dosage are as good as the conventional Fenton's for a normal Iron dosage.

  • PDF