Browse > Article
http://dx.doi.org/10.5338/KJEA.2014.33.2.78

The Applicability of the Acid Mine Drainage Sludge in the Heavy Metal Stabilization in Soils  

Kim, Min-Suk (Division of Environmental Science and Ecological Engineering, Korea University)
Min, Hyungi (Division of Environmental Science and Ecological Engineering, Korea University)
Lee, Byeongjoo (Division of Environmental Science and Ecological Engineering, Korea University)
Chang, Sein (Division of Environmental Science and Ecological Engineering, Korea University)
Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
Koo, Namin (Division of Forest Soil & Water Conservation, Korea Forest Research Institute)
Park, Jeong-Sik (Environmental Safety Team, Korea Testing & Research Institute)
Bak, Gwan-In (Technology Research Center, Mine Reclamation Corporation)
Publication Information
Korean Journal of Environmental Agriculture / v.33, no.2, 2014 , pp. 78-85 More about this Journal
Abstract
BACKGROUND: Recent studies using various industrial wastes for heavy metal stabilization in soil were conducted in order to find out new alternative amendments. The acid mine drainage sludge(AMDS) contains lots of metal oxides(hydroxides) that may be useful for heavy metal stabilization not only waste water treatment but also soil remediation. The aim of this study was to investigate the applicability of acid mine drainage sludge for heavy metals stabilization in soils METHODS AND RESULTS: Alkali soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine sites nearby. Three different amounts(1%, 3%, 5%) of AMDS were applied into control soil and contaminated soil. For determining the changes in the extractable heavy metals, $CaCl_2$ and Mehlich-3 were applied as chemical assessments for metal stabilization. For biological assessments, lettuce(Lactuca sativa L.) and chinese cabbage(Brassica rapa var. glabra) were cultivated and accumulation of heavy metals on each plant were determined. It was revealed that AMDS reduced heavy metal mobility and bioavailability in soil, which resulted in the decreases in the accumulation of As, Cd, Cu, Pb, and Zn in each plant. CONCLUSION: Though the high level of heavy metal concentrations in AMDS, any considerable increase in the heavy metal availability was not observed with control and contaminated soil. In conclusion, these results indicated that AMDS could be applied to heavy metal contaminated soil as an alternative amendments for reducing heavy metal mobility and bioavailability.
Keywords
Acid mine drainage sludge; Bioavailability; Heavy metals; Phytotoxicity; Stabilization;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Song, Y.J., Lee, G.S., Shin, K.H., Kim, Y.C., Seo, B.W., Yoon, S.N., 2012. Adsorption of heavy metals on sludge from the treatment process of acid mine drainage, J. Korean Inst. Resour. Recy. 21, 35-43.   과학기술학회마을   DOI   ScienceOn
2 Sekhon, B.S., Bhumbla, D.K., 2013. Competitive effect of organic anions on phosphorus attenuation capacity of acid mine drainage floc, Environ. Earth Sci. 70, 651-660.   DOI   ScienceOn
3 Sherman, D.M., Randall, S.R., 2003. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy, Geochim. Cosmochim. Ac. 67, 4223-4230.   DOI   ScienceOn
4 Sibrell, P.L., Montgomery, G.A., Ritenour, K.L., Tucker, T.W., 2009. Removal or phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge, Water Res. 43, 2240-2250.   DOI   ScienceOn
5 Tran, T.S., Simard, R.R., 1993. Mehlich-3 extractable elements. in: Carter, M.R. (Eds), Soil sampling and methods of analysis, Canadian Society of Soil Science, Lewis Publishers, Boca Raton, FL, pp. 43-50.
6 Tsang D.C.W., Olds, W.E., Weber, P.A., Yip, A.C.K., 2013. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching, Chemosphere 93, 2839-2847.   DOI   ScienceOn
7 Tsang, D.C.W., Yip, A.C.K., 2014. Comparing chemicalenhanced washing and waste-based stabilisation approach for soil remediation, J. Soil Sediment 14, 936-947.   DOI   ScienceOn
8 Wei, X., Viadero Jr., R.C., Bhojappa, S., 2008. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatement plants, Water Res. 42, 3275-3284.   DOI   ScienceOn
9 Lee, S.H., Ji, W., Lee, W.S., Koo, N., Koh, I.H., Kim, M.S., Park, J.S., 2014. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings, J. Environ. Manage. 139, 15-21.   DOI   ScienceOn
10 Koo, N., Lee, S.H., Kim, J.G., 2012. Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity, Environ. Geochem. Health 34, 337-348.   DOI   ScienceOn
11 Lee, S.H., Lee, J.S., Choi, Y.J., Kim, J.G., 2009. In situ stabilization of cadmium-, lead-, zinc-contaminated soil using various amendments. Chemosphere 77, 1069-1075.   DOI   ScienceOn
12 Lee, S.H., Park, H., Koo, N., Hyun, S. Hwang, A., 2011. Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods, J. Hazard. Mater. 188, 44-51.   DOI   ScienceOn
13 Mall, I.D., Srivastava, V.C., Kumar, G.V.A., Mishra, I.M., 2006. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution, Colloid. Surface. A 278, 175-187.   DOI   ScienceOn
14 Rout, G.R., Das, P., 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc, Agronomie 23, 3-11.   DOI   ScienceOn
15 Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plan. 15, 1409-1416.   DOI
16 Mench, M.J., Manceau, A., Vangronsveld, J., Clijsters, H., Mocquot, B., 2000. Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc, Agronomie 20, 383-397.   DOI   ScienceOn
17 Penn, C.J., Bryant, R.B., Kleinman, P.J.A., Allen, A.L., 2007. Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials, J. Soil Water Conserv. 62, 269-276.
18 Ruihua, L., Lin, Z., Tao, T., Bo, L., 2011. Phosphorus removal performance of acid mine drainage from wastewater, J. Hazard. Mater. 190, 669-676.   DOI   ScienceOn
19 Jeon, C.S., Baek, K., Park, J.K., Oh, Y.K., Lee, S.D., 2009. Adsorption characteristics of As(V) on iron-coated zeolite, J. Hazard. Mater 163, 804-808.   DOI   ScienceOn
20 Dzombak, D.A., Morel, F.M.M., 1990. Surface complexation modeling: hydrous ferric oxide, Wiley, USA, pp.279-297.
21 Esnaola, M.V., Millan, E., 1998. Evaluation of heavy metal lability in polluted soils by a cation exchange batch procedure, Environ. Pollut. 99, 79-86.   DOI   ScienceOn
22 Goldberg, S., Johnston, C.T., 2001. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling, J. Colloid. Interf. Sci. 234, 204-216.   DOI   ScienceOn
23 Koo, N., Jo, H.J., Lee, S.H., Kim, J.G., 2011. Using response surface methodology to assess the effects of iron and spent mushroom substrate on arsenic phytotoxicity in lettuce (Lactuca sativa L.), J. Hazard. Mater. 192, 381-387.
24 Jeong, H.Y., Lee, J.L., Hayes, K.F., 2008. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area, Geochim. Cosmochim. Ac. 72, 493-505.   DOI   ScienceOn
25 Kim, K.R., Park, J.S., Kim, M.S., Koo, N., Lee, S.H., Lee, J.S., Kim, S.C., Yang, J.E., Kim, J.G., 2010. Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper, Korean J. Soil Sci. Fert. 43, 864-871.   과학기술학회마을
26 Kim, M.S., Koo, N., Kim, J.G., Yang, J.E., Lee, J.S., Bak, G.I., 2012. Effects of soil amendments on the early growth and heavy metal accumulation of Brassica campestris ssp. Chinensis Jusl. in heavy metal-contaminated soil, Korean. J. Soil Sci. Fert. 45, 961-967.   과학기술학회마을   DOI   ScienceOn
27 Arai, Y., Sparks, D.L., 2002. Residence time effects in arsenate surface speciation at the aluminum oxide-water interfacem, Soil Sci. 167, 303-314.   DOI
28 Bernstein, L., 1975. Effects of salinity and sodicity on plant growth, Annu. Rev. Phytopathol. 13, 295-312.   DOI   ScienceOn
29 Choi, S.J., Lee, B.T., Kim, J.Y., kim, K.W., 2013. Study on adsorption/desorption of As by mine sludge depending on pH and natural organic matter, Geosys. Eng. 16, 191-199.   DOI
30 Dakora, F.D., Phillips, D.A., 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant Soil 245, 35-47.   DOI   ScienceOn
31 Driehaus, W., Seith, R., Jekel, M., 1995. Oxidation of arsenite(III) with manganese oxides in water treatment, Water Res. 29, 297-305.   DOI   ScienceOn
32 Droppa, M., Horváth, G., 1990. The role of copper in photosynthesis, Crit. Rev, Plant Sci. 9, 111-123.   DOI
33 Kim, M.S., Min, H., Lee, B., Kim, J.G., Koo, N., Park, J.S., Bak, G.I., 2014. Effects of various amendments on heavy metal stabilization in acid and alkali soils, Korean J. Environ. Agric. 33, 1-8.   과학기술학회마을   DOI   ScienceOn
34 Zhang X., Lin, L., Chen, M., Zhu, Z., Yang, W., Chen, B., An, Q., 2012. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance, J. Hazard. Mater. 229-230, 361-370.   DOI   ScienceOn
35 Chiu, V.Q., Hering, J.G., 2000. Arsenic adsorption and oxidation at manganite surface. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species, Environ. Sci. Technol. 34, 2029-2034.   DOI   ScienceOn
36 Wu, L.H., Luo, Y.M., Christie, P., Wong, M.H., 2003. Effects of EDTA and low molecular weight organic acids on soil solution prpperties of a heavy metal polluted soil, Chemosphere 50, 819-822.   DOI   ScienceOn
37 Oladoja, N.A., Aliu, Y.D., 2009. Snail shell as coagulant aid in the alum precipitation of malachite green from aqua system, J. Hazard. Mater. 164, 1496-1520.   DOI